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ABSTRACT 

Dowel bars are used to transfer loads between adjacent pavement sections within a 

jointed concrete pavement. Epoxy coated steel is the most common material used for dowel 

bars, but steel dowel bars have been found to be susceptible to corrosion. The objectives of 

this research is to investigate fiber reinforced plastic (FRP) and stainless steel as alternative 

dowel bar materials, and to study the effects of FRP and stainless steel dowels size and 

spacing on load transfer behavior of concrete pavements. 

The load transfer behavior of the pavement was evaluated biannually by utilizing a 

falling weight deflectometer (FWD), measuring joint faulting and joint opening, and 

conducting a visual distress survey. The analyses indicate the epoxy coated steel 

outperformed the alternative materials. The average research lifetime load transfer for the 

epoxy coated steel is 91 percent, while the best performance of the alternative material at the 

same 12 inch on center spacing is approximately 87 percent for the stainless steel. The data 

also indicate the decrease in spacing, from 12 to 8 inches, increases the load transfer for 

stainless steel and 1.5 inch diameter FRP dowels. Although the FRP dowels with decreased 

spacing were outperformed by the epoxy coated steel dowels, they performed adequately. 

It is recommended that the current dowel bar standard continue to be implemented for 

concrete pavements requiring dowels as load transfer devices. However, if the pavement is 

to be constructed in a corrosive environment or a longer design life is desired, stainless steel 

spaced at 12 inches and 1.5 inch diameter FRP dowels spaced at 8 inches should be 

considered. 
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1 INTRODUCTION 

1.1 Background 

Jointed portland cement concrete pavement has been utilized throughout the country 

with relative success. The utilization of transverse joints in the jointed concrete pavement is 

a method to prevent the development of random cracks due to stresses induced by moisture 

and thermal gradients, and restrained slab movement due to friction between the pavement 

and subbase. Although random cracking is prevented, the transverse joints create planes of 

weakness within the pavement that should be strengthened through the use of load transfer 

devices. The purpose of load transfer devices is simply to transmit load from the loaded 

pavement slab to the adjacent unloaded slab, distributing the load over a larger area. The two 

most common methods of load transfer are aggregate interlock of the concrete and dowel 

bars placed at the joint. 

Aggregate interlock utilizes the shear resistance between the concrete slabs to transfer 

the load. As the tire load approaches the joint, the loaded pavement begins to deflect and 

initial contact is made with the opposing slab, with any further deflection resisted by the 

bearing capacity and friction of the aggregate. Studies have shown the performance of 

aggregate interlock is dependent on joint opening width and concrete texture [1;2,3,4]. 

Pavements relying on aggregate interlock for load transfer are more susceptible to pumping, 

faulting, and reduced load transfer efficiency due to weakened subgrade soils from moisture 

fluctuations. Tayabji and Colley [5] report aggregate interlock pavements experienced 

significant distress in wet climates, and are generally used only in the dry climate of western 

United States. Aggregate interlock may also be adequate for low traffic volume roads. 
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In areas with wet climates or experience wet seasons, the typical load transfer device 

is steel dowel bars. Use of steel dowels as load transfer devices was first reported on a 

concrete pavement project near Newport News, Virginia, in 1917 [6]. Steel's shear strength 

and stiffness allow the dowel to transfer loads. However, an important detrimental property 

of steel is its susceptibility to corrosion. The steel dowel bars are exposed to corrosive agents 

such as salts and deicers that can attack the dowels through paths created sawing pavement 

joints. Corrosion can result in severe pavement problems directly related to the volumetric 

increase of corroded steel. The expanded dowel may prevent horizontal slab movement and 

cause joint spalling and cracking. The dowel area that can effectively carry loads is also 

reduced, resulting in reduced load transfer efficiency. McDaniel [7] estimates that it would 

cost approximately $212 billion to repair damage of U.S. highways associated with 

corrosion. 

A typical method of corrosion inhibition is the use of a coating material to cover steel . 

dowel bars. Darter and Barenberg recommend utilizing dowel bars with a full length suitable 

coating such as asphaltic cement [8], however further research and experience has yielded 

epoxy resin as the typical coating material. Although generally effective, the coatings may 

accelerate the corrosion rate of steel dowels if uncoated areas are present. Uncoated areas 

may occur due to flaws in the coating process or scratches from careless storing, handling or 

placement of dowels during construction. 

The corrosion of steel is a chemical reaction termed an oxidation-reduction process in 

which one metal will give up electrons ( oxidized) and one metal gains electrons (reduced). 

The locations of the oxidation and reduction processes are termed the anode and cathode, 

respectively. Corrosion of a single, steel dowel bar can occur due to the presence of both 
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anodes and cathodes, along with water to act as an electrolyte to carry the electrons. When a 

dowel is scraped, uncoated areas can corrode in the shape of a semi-circle (pit) in which the 

area exposed will become the anode and the adjacent steel still protected is a cathodic areas. 

The corrosion will occur more rapidly due to the relative short distance between the anode 

and cathode that the ·electrons must flow. The pitted corrosion will reduce the area capable 

of carrying a load, thus reducing the load transfer efficiency. 

Joint sealants have also been utilized to reduce steel corrosion. The transverse joint 

sealants are typically composed of elastic material to allow for pavement slab movements 

associated to temperature gradients [9]. Typical sealants are asphalt based sealant, silicone, 

and rubber. The inhibition of steel corrosion is accomplished by reducing the exposure to 

corrosive agents carried by surface water. Minimizing water infiltration also has the added 

benefit of reducing the potential for pumping and faulting due to subgrade or subbase 

softening, resulting in loss of structural support. In addition to reducing water infiltration, 

joint sealants also prevent incompressible material from becoming lodged between joints, 

preventing slab movements. The incompressibles can contribute to spalling and possibly 

blow-ups due to excessive pressure along the joint faces. 

Along with the corrosive nature of steel dowels, jointed concrete pavement reinforced 

with dowel bars may develop dowel looseness, or hollowing. The hollowing of concrete is 

generally associated with the repetitive loading of the pavement; however, they also may be 

present due to improper consolidation during construction and concrete shrinkage. 

Repetitive loading can create the hollowing effect due to stress concentrations at the contacts 

between the dowel and concrete. If the stress concentrations are large enough, the concrete 

will gradually be crushed. The resulting looseness prevents the dowel from resisting 
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movement, with shear forces generated only after the vertical displacement allowed by the 

existing looseness occurs. The looseness may also contribute to corrosion problems of 

coated dowel bars due to the impact and rubbing of dowel bar on the rough textured concrete, 

thus scratching the protective coating. 

The implications of the looseness are discussed by Davids, who utilized a finite 

element model to analyze the effects. It was determined that as the gap between the dowel 

and concrete increased, the shear stress of the dowel decreased [ 1 OJ. The stress applied to the 

concrete remained the same, so it would be expected that the stress be transferred to another 

portion of the pavement system such as the subbase. Davids' model suggests subbase 

material experienced a maximum vertical stress increase of 68% due to a gap increase from 

0.00 to 0.12 mm. As expected, a decrease in dowel shear corresponded with a decrease in 

the load transfer efficiency and joint effectiveness. 

1.2 Research Needs 

The problems and continuing questions associated with steel dowel bars and 

protective coatings, proves the need for continued research. Currently, testing and research is 

being focused on the use of alternative materials for load transfer, specifically the use of fiber 

composite and stainless steel due to their durability and resistance to corrosion, along with 

strong tensile strength. 

Stainless steel materials have been used in the commercial industry since the 1920's 

and fiber composite materials have been utilized in the aerospace and aeronautic industries. 

Stainless steel is manufactured by melting steel scrap metal with various other metals, with 

the type of metals and proportions dependent on the desired qualities. Stainless steel dowels 
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can be manufactured as solid stainless steel bars, mild steel or other material with a bonded 

stainless steel coating, hollow pipes, or pipes filled with concrete. 

The fabrication of fiber composite dowels includes a matrix of polymeric material 

that is reinforced by fibers or other reinforcing material. Included within the matrix are 

resins (polymers), fiber reinforcements, fillers and additives. Fibers are typically composed 

of glass, but may also be aramid or carbon. The fibers are generally produced by a pultrusion 

method in which the glass fibers are bundled together and drawn through a resin bath so that 

the fibers are oriented parallel to the longitudinal axis of the dowel bar. The bar is then 

heated to allow the resin to cross-link and harden. The dowels can then be cut to the desired 

length. 

Although these materials have been used in other industries, the construction industry 

has been reluctant to utilize these materials. The biggest barrier for stainless steel and fiber 

composite dowel bars appears to be the initial increased material cost and limited amount of 

knowledge of fiber composite properties. Current research is being devoted to providing 

material property information and determining the affects of the negative aspects of fiber 

composite dowels, including a lower modulus of elasticity and reduced shear strength 

capacity [11]. The research is also geared to determine if increased initial costs of both fiber 

composite and stainless steel can be offset by an improved and longer lasting pavement. 

Research is currently underway in several field projects throughout the country. 

Several research projects investigating alternative dowel bars are currently being funded by 

the Federal Highway Administration (FHW A) under the Test and Evaluation Project 30 (TE-

30), High Performance Concrete Pavement (HPCP), established to explore innovative 

pavement design and construction concepts. The projects underway are located in several 
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areas throughout the country. There are four projects in Illinois, one in Kansas, two in 

Minnesota, one in Ohio, and two in Wisconsin. Along with the field tests, Iowa State 

University has conducted laboratory testing of fiber composite dowel bars to provide material 

properties to use in design. 

1.3 Research Objectives 

The research consists of evaluating fiber composite and stainless steel dowel bars in a 

highway pavement. The goal of this research is to evaluate field performance and provide 

recommendations on design, materials, construction practices and performance 

characteristics of stainless steel and fiber composite dowel bars. The project includes 

monitoring the installation of the dowel bars during construction, conducting visual distress 

surveys after construction, and evaluating pavement performance. The performance of 12 

inch and 8 inch-on-center dowel spacing and fiber composite dowel bar diameter are also 

built-in variables of the experiment. The evaluation period will allow a comparison of the 

performance of highway joints reinforced with fiber composite and stainless steel dowel bars 

to the performance of conventional epoxy-coated steel dowel bars, under the same design 

criteria and field conditions. 
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2 LITERATURE REVIEW 

2.1 Fiber Reinforced Polymer (FRP) Composites 

A composite material can be defined as any material composed of more than one 

component, with each component contributing its strengths as a material to the overall 

performance of the composite. Common composites found in the construction industry are 

asphaltic and Portland cement concrete, which utilize the strength of the aggregate with the 

binding nature of the cements. FRP composites are composed of some combination of fibers 

and resin, with the fibers providing strength and stiffness and the resin providing a matrix to 

hold and protect the fibers. 

Fibers within FRP composites are typically made of glass, aramid, or carbon. The 

glass fibers are primarily composed of silica, typical for any glass product. However, in 

addition to the silica, the fibers also contain oxides of calcium, boron, sodium, iron, and 

aluminum [12]. By varying the amount of each, different glass fibers can be produced, with 

the main types classified as E-glass, C-glass, and S-glass. E-glass is the most economical of 

the three and most widely used. The downside to the glass fibers are their susceptibility of 

corrosion in a high alkaline environment. [13,14,15]. However, the resin matrix surrounding 

the fibers provides a protective coating resisting the alkali corrosion [16]. 

Carbon fibers, typically called graphite and commonly used for golf club shafts, are 

more resistant to chemicals and corrosion [17], however have low toughness and impact 

resistance [18]. The graphite is made from a series of heat treatments of polyacrylintrile. 

The manufacturing process to create the graphite results in the most expensive of the three 

fibers. 
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Aramid fibers in comparison are tough and impact resistant, but are not as stiff as the 

carbon fibers. The aramid fibers consist of organic polymers which are highly oriented in the 

axial direction, resulting in a high tensile strength. The aramid fibers have been shown to be 

resistant to water, seawater, alkali, and chlorides [ 18, 19] 

The resin matrix surrounding the fiber reinforcement 1s a polymer, which is a 

molecule made of repeating units termed monomers. The molecule chains are classified as 

either thermoplastic or thermoset. Thermoplastic resins can be remolded if reheated, while 

thermoset resins become a rigid solid and cannot be reformed. The behavioral difference 

between the two resins can be explained by the chemical bonding. The thermoplastic resins 

are a linear repeating unit while thermoset resins form cross-linked molecules. A schematic 

of the two resins are shown in Figure 1. FRP composites generally utilize thermoset resins 

which are typically composed of vinyl ester, polyester, and epoxy. 

Polymer chain 

(a) (b) 
Figure 1. Structural shape of resins, ( a) thermoplastic, (b) thermoset. [20] 
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2,2 Stainless Steel 

Stainless steel is an iron based alloy that must contain a minimum of 10.5 percent 

chromium and less than 1 percent carbon. The chromium creates a surface film that resists 

oxidation and creates a corrosion resistant material. The manufacturing process consists of 

melting scrap metal with various alloys of chromium, nickel, and molybdenmum, depending 

on the stainless steel type. The material is melted by passing an electric current through the 

carbon electrodes of an electric arc furnace. The molten material is then transferred into a 

decarbonization vessel (AOD, Argon Oxygen Decarbonization) which reduces the carbon 

levels. At this same time, the final alloy additions are made to make the exact chemistry 

desired for the stainless type. 

There are five types of stainless steel, in which, further modifications can be made by 

altering the chemical composition. Modifications may be desired for different corrosion 

conditions, temperature ranges, strength requirements, improve weldability, machinability, 

work hardening, and formability. The classifications are based on the crystalline structure of 

the alloy and are: 

• Martensitic 

• Ferritic 

• Austenitic 

• Duplex 

• Super Austenitics and Duplex 

Martensitic stainless steel consists of 12 to 18 percent chromium and less than 1 

percent carbon. It is magnetic, can be hardened if heat treated, and has poor welding 

characteristics. Typical uses include knife blades, surgical instruments, shafts, and springs. 
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The Ferritic stainless steel contains the same amount of chromium but less than 0.2 

percent carbon. The resulting difference is the alloy cannot be hardened by heat treatment. 

Typical uses of F erritic stainless steel include automotive exhaust and fuel lines, cooking 

utensils, and bank vaults. 

The third stainless steel category is Austenitic and is the stainless steel type utilized 

for this experiment. In comparison to Ferritic stainless steel, Austenitic consists of slightly 

more chromium, and in addition has 8 to 14 percent nickel. The resulting alloy is 

nonmagnetic, cannot be hardened by heat but can by cold treatment, is the most corrosion 

resistant, easily welded, high and low temperature resistant, and has excellent cleanablity. 

The typical uses include kitchen sinks, food processing equipment, chemical vessels, and 

ovens. The limitations of this stainless steel is that it undergoes oxidation at extreme 

temperatures (925 degrees Celsius), should be used in low concentrations of reducing acid, 

and very high levels of halide ions, such as chloride, can breakdown the corrosion resistant 

surface. 

Duplex stainless steels contain 18 to 26 percent chromium and 4 to 7 percent nickel. 

In addition, most Duplex stainless steels contain 2 to 3 percent molybdenum. The resulting 

alloy structure is a combination of both Ferritic and Austenitic, thus the name Duplex. 

Characteristics of the alloy include high resistance to stress corrosion cracking, increased 

resistance to chloride attack, very weldable, and higher tensile and yield strengths. Currents 

applications of Duplex stainless steel include sea water environments, heat exchangers, and 

food pickling plants. 

The last category is the Super Austenitics and Duplex stainless steels. These alloys 

are specially designed to withstand the conditions that the normal alloys cannot. These 
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conditions include an acidic environment and areas in which insufficient oxygen is available 

to maintain the oxide film. 

The chemical composition and typical mechanical properties of stainless steel by 

different grades ar~ presented in Tables 1 and 2. Information presented on stainless steel was 

obtained from the Stainless Steel Information Center of the Specialty Steel Industry of North 

America [21]. 

T bl 1 Ch . IC a e . em1ca ompos110n o am ess ee. f St . l St l [21] 
Chemical Compositon, % 
Maximum values unless noted. 
Stainless C Mn p s Si Cr Ni Mo N Grade 
410 0.15 1.00 0.040 0.030 0.50 11.50-13.00 (Martensitic) 
430 0.15 1.00 0.040 0.030 1.00 16.00-18.00 0.75 (Ferritic) 
304 0.08 2.00 0.045 0.030 1.00 18.00-20.00 8.00-10.50 (Austenitic) 
316 0.08 2.00 0.045 0.030 1.00 16.00-18.00 10.00-14.00 2.00-3.00 (Austenitic) 
2205 0.02 2.00 0.045 0.030 1.00 22.00-23.00 5.50-6.00 3.00-3.50 0.17 (Duplex) 

Table 2. Stainless Steel Mechanical Pro~erties. [21) 
Stainless Tensile Strength Yield Strength Elongation b Hardnessc 
Grade3 ksi MPa ksi MPa 
410 70 483 45 310 25 B80 (Martensitic) 
430 75 517 50 345 35 B85 (Ferritic) 
304 84 579 42 290 55 B80 (Austenitic) 
316 84 579 42 290 50 B79 (Austenitic) 
a Steel in annealed condition 
b Elongation in 2" (50.08 mm) 
c Hardness in Rockwell B 
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2.3 Iowa State University Laboratory Investigations 

A significant amount of research has been conducted on fiber composite and stainless 

steel in the laboratories of Iowa State University. Most of the research has focused on the 

engineering properties of the material with limited information regarding the field 

performance. Properties that were investigated include tensile strength, modulus of 

elasticity, and durability within a simulated field environment. 

In 1992, Kent Fish [ 11] began the investigations by looking at the feasibility of fiber 

composites as reinforcement within concrete structures. During the investigations, Fish 

tested 127 beams for tensile strength both directly and flexurally, and determined the 

modulus of elasticity through the same testing. The average direct tensile strengths for the 

one-half inch FRP bars was 120 kips per square inch (ksi), with a modulus of elasticity of 

4.9lxl06 pounds per square inch (psi). The results also indicate that FRP bars experienced 

larger deflections than beams reinforced with steel, primarily due to the lower modulus of 

elasticity. Fish also summarized the advantages and disadvantages of FRP compared to 

standard steel reinforcement and is summarized below in Table 3. 

Table 3. Advantages and Disadvantages of FRP for use in Construction. 

Advantages Disadvantages 

High tensile strength 

· High corrosion resistance 

Lightweight 

Fewer concrete splitting problems 
No magnetic fields 

Low Modulus of Elasticity 

Long development length 

Brittle tensile failure 

Low compressive strength 
Low dowel shear strength 
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At approximately the same time Fish was conducting his work, Albertson [22] was 

performing a study of the overall capacity and load deflection characteristics of FRP and 

steel dowel systems. Albertson utilized 1.25 inch diameter FRP dowels and 1.5 inch 

diameter steel dowels to test for shear strength, tension, and deflections. The average 

deflection at the face of the joint from a 10,000 pound load for the steel and FRP dowels was 

0.0075 and 0.113 inches, respectively. The larger FRP dowel deflection verifies Fish's 

results. 

Hughes [23] investigated the static, fatigue, and dynamic behavior ofFRP dowels and 

compared the results to steel dowels when used as in transverse joints of highway pavements. 

Hughes constructed a full scale laboratory test with a 6 foot wide by 12 foot long by 12 inch 

thick concrete slab. It was loaded repeatedly with 9,000 pounds, for a minimum of 2 million 

cycles. The joints were reinforced with either 1.5 inch diameter steel dowels spaced at 12 

inches or 1.75 inch diameter FRP dowels spaced at 8 inches on center. The slabs were tested 

for both relative deflection and load transfer efficiency. Load transfer for Hughes' research 

was defined as the load transferred to the unloaded slab divided by the total load applied, 

with an ideal load transfer of 50%. The research determined that the load transfer for FRP 

dowels stayed nearly constant over the 2 million loading cycles, at 44.5% with a maximum 

of 50% load transfer as defined by Hughes. The 1.5 inch diameter steel dowels experienced 

a decrease in load transfer from 43.5% to 41.0%. Hughes also noted that both dowel systems 

incurred a gradual increase in relative displacements over the loading cycles. 

As part of his research, Hughes also installed FRP dowels in two transverse joints on 

a new concrete pavement on U.S. Highway 30 east of Ames, IA. The FRP dowels were 1.75 

inches in diameter and spaced at 8 inches on center, in place of the standard 1.5 inch 

diameter steel dowels spaced at 12 inches. At the time of his report the test site was still 
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being monitored, but it was reported that the FRP dowels were performing equivalent to the 

steel dowels during non-destructive testing and visual inspections. 

While Hughes was investigating fatigue, Lorenz [24] was conducting research on 

potential aging effects of FRP dowels when exposed to a wet, salt, or lime environment. 

This research was conducted to investigate the effectiveness of the resin matrix to protect the 

glass fibers. Earlier aging studies determined that degradation of glass fibers in an alkaline 

environment should be expected. However, the glass fibers did not have the vinyl ester resin 

coating. The FRP dowel bars were surrounded by concrete similar to that used in paving 

operations and the aging process was accelerated by placing the specimen into the 

appropriate environment at a temperature of 140 degrees Fahrenheit for 63.3 days. The 

desired effect of the aging process was to produce a specimen equivalent to one that spent so· 

years in each environment. The aged specimen were tested for shear strength and pullout 

capacity, and compared to unaged specimen. Lorenz concluded that the glass fibers 

encapsulated in the vinyl ester resin were very resistant to the accelerated aging. He also 

noted that the shear and pullout capacity of the aged specimen compared well with the 

unaged specimen, with little to no affect on the dowel characteristics. 

Mehus [25] continued the work began by Lorenz by investigating the long term 

durability of commercially available FRP products for reinforcement of structural concrete. 

Mehus conducted his research by aging the FRP dowels in an alkaline environment with an 

approximate pH of 12, and aged for 81 days at 140 degrees Fahrenheit to simulate a 50 year 

old specimen. Unlike Lorenz, the environment was established to simulate the pore water 

within a concrete pavement. Thus, the FRP dowels were placed directly in the aqueous 

solution, without being cast in concrete. The study also tested unaged dowels for 

companson. 
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Mehus concluded that aging in a highly alkaline environment significantly reduces 

the ultimate tensile strength and maximum strain capacity in comparison to the unaged 

specimen. He also noted that the reductions do not occur linearly, but rather a rapid 

reduction is seen during the initial aging, after which the strength and strain reductions occur 

slowly. After 19 days of aging, or 5.4 simulated years, the ultimate tensile strength of the 

aged specimen was lower by 29 to 60 percent, depending on the FRP manufacturer. The 

ultimate tensile strengths at the end of the aging process (50 years) decreased by 48 to 66 

percent of the unaged ultimate tensile strength. The maximum strain capacity was reduced 

by 53 to 68 percent, but the modulus of elasticity was not affected. An unexpected aspect of 

this research occurred when the unaged FRP dowels exhibited approximately 50 percent 

lower ultimate tensile strengths than were expected as specified by the manufacturers. The 

Iowa State University results were verified by University of Wyoming (UW), which utilized 

a different testing technique developed at UW. 

Research conducted by Porter et al. [ 16] is of significant importance because the glass 

fiber reinforced polymer (GFRP) dowel bars investigated were identical to those utilized in 

the research conducted by the author. Porter's objectives for the research were stated as: 

1. Determine the material properties of all the GFRP dowel bars, 

2. Investigate the behavioral parameters of aged and unaged GRFP dowel bars under 
elemental static testing, 

3. Investigate the behavior of aged and unaged GFRP dowel bars under elemental 
fatigue loading (0.5 to 1 million cycles), 

4. Investigate the fatigue behavior of GFRP dowel bars under an accelerated partial 
design life number of cycles (3 to 5 million cycles), 

5. Determine the bond characteristics of both aged and unaged GFRP dowel bars, 
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6. Evaluate the condition of dowel bars placed in actual highway joints, 

7. Investigate the failure modes and adequacy of alternative dowel bar parameters, 

8. To develop a finite element model of jointed concrete highway pavement. 

As stated, part of the research objective was to determine the material properties of 

the GFRP dowel bars. Two manufacturers supplied GFRP dowel bars for the project, one 1.5 

inches in diameter and one at 1.88 inches. The proportions of Type-E glass fibers and 

isophthalic polyester resin determined for the dowel bars and are presented below in Table 4. 

Porter et al. also presented mechanical properties of various dowel bars which are shown in 

Table 5. The testing regime of the dowel bars included direct shear tests, fatigue testing, 

pullout tests, and simulated 50 year aging in an alkaline environment for specimen cast in 

concrete. 

Table 4. GFRP Dowel Composition. (16) 
Specimen 

1.5" Dia., Glass Fiber 
1.5" Dia., Resin 
1.88" Dia., Glass Fiber 
1.88" Dia., Resin 

Weight Fraction 
0.6997 
0.3003 
0.7378 
0.2622 

Volume Fraction 
0.5179 
0.4821 
0.5746 
0.4254 

Table 5. Dowel Material and Mechanical Properties. [16) 
EI, (106) Material Diameter, Modulus of Pullout Tests 

m. Elasticity, E (106
) :esi lb-in2 (lb/0.5'') 

Epoxy-coated Steel 1.5 29.0 7.206 11,490 
Stainless Steel 1.5 28.0 6.958 940 
GFRP 1.5 4.93 1.255 1430 
GFRP 1.88 6.51 3.950 1660 
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The conclusions from the testing indicate GFRP dowels with a 1.5 inch diameter 

spaced at 12 inches were not adequate for load transfer for the anticipated design life of the 

pavement. The 1.5 inch diameter GFRP dowels spaced at 6 inches on center were effective 

in transferring load. Porter et al. recommended that for pavements less than 10 inches thick, 

GFRP dowels should be ¼-inch larger in diameter than that recommended by the American 

Association of State Highway and Transportation Officials (AASHTO), and spaced at the 

standard 12 inches on center. For pavement thickness greater than 10 inches, it is 

recommended that 1.5 inch diameter GFRP dowels be used, but spaced at 6 inches on center. 

Table 6 illustrates the GFRP recommendations compared to the current AASHTO 

recommendations for steel dowels. 

T bl 6 D . a e . es1gn gm es or tee an "d fi S l d GFRP . 
Pavement AASHTOa 

Thickness, in. Diameter, in. Spacing, in. 
14 1.75 
12 1.50 
10 1.25 
8 1.00 
6 0.75 

a Source: Reference [26] 
b Source: Reference [16] 

12 
12 
12 
12 
12 

GFRPb 
Diameter, in. Spacing, in. 

1.50 6 
1.50 6 
1.50 12 
1.25 12 
1.00 12 

2.4 Field Studies 

Field projects presented are part of an overall research program funded by the Federal 

Highway Administration (FHW A), TE-30, High Performance Rigid Pavements (HPRP). 

The research was initiated by the Highway Innovative Technology Evaluation Center 

(HITEC), whose purpose is "to expedite the introduction of new innovative technologies to 

the highway prgram particularly from the private sector and the entrpreneur who might not 
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otherwise seek to penetrate the diverse and difficult highway market [27, p.1]." Suggested 

innovation areas for the program include [28, p.1]: 

• Increasing the service life. 

• Decreasing construction time. 

• Lowering life-cycle costs. 

• Lowering maintenance costs. 

• Constructing ultra-smooth ride quality pavements. 

• Incorporating recycled or waste products while maintaining quality. 

• Utilizing innovative construction equipment and procedures. 

• Utilizing innovative quality initiatives. 

HITEC presented an evaluation plan for alternative dowel bar materials. The plan 

consisted of a literature review of previous studies, field installations, and laboratory 

investigations. The field studies were required to be monitored by the highway agencies 

directly after construction completion and every six months for the first eighteen months of 

service life. The test site must then be monitored once a year for five years. Test site 

monitoring included visual survey in accordance to the Strategic Highway Research Program 

Manual (Distress Identification Manual for the Long-Term Pavement Performance Program, 

--- SHRE"'."P_:""338), load transfer_ __ testing using _ falling weight deflectometer (FWD), __ core _ 

sampling, and dowel bar location using non-destructive testing methods. 

TE-30 project sites are currently in Illinois, Iowa, Kansas, Maryland, Michigan, 

Minnesota, Mississippi, New Hampshire, Ohio, Virginia, and Wisconsin, although not all 

project test sites are investigating FRP composite and stainless steel dowel bars. The project 
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summaries discussed below are presented in a report submitted to the Federal Highway 

Administration by Applied Pavement Technology Incorporated of Champaign, Illinois [28]. 

2.4.1 Illinois 

Williamsville, IL: 1-55 Southbound, 1996 

The I-55 project is not officially a TE-30 project but was the first project in Illinois in 

which FRP dowels were investigated as a possible solution to the corrosion of standard steel 

reinforcement. The project design consisted of an 11.25 inch thick pavement with 45 foot 

transverse spacing, with intermediate "hinge" joints containing tie bars placed at 15 foot 

intervals. A total of four transverse joints contained 1.5 inch diameter FRP dowels were 

compared to three joints containing standard 1.5 inch diameter epoxy-coated steel dowel 

bars, both with 12 inch on center spacing. The FWD testing determined a gradual decrease 

in overall load transfer efficiency over three years, with the conventional steel dowel bars 

consistently showing higher levels of load transfer then the FRP dowels. The Illinois 

Department of Transportation has reported that no joints are exhibiting signs of distress. 

Naperville, IL: Route 59, 1997 

This project consisted of a 10 inch thick pavement utilizing the same transverse and 

"hinge" joint spacings as the I-55 project. Several different dowel bars were investigated, 

including different size and different FRP dowel manufacturers. Three manufacturers 

supplied 1.5 inch diameter FRP dowels, with one company also supplying a 1.75 inch 

diameter dowel. The FRP dowel sections were compared with pavement sections containing 

1.5 inch diameter epoxy-coated steel dowel bars. After three years of monitoring, the 

pavement is performing well with no signs of distress. The conventional steel dowels have 

maintained the best load transfer efficiency at approximately 85%. The FRP dowels ranged 
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from 70% to 85%. It was also noted that the maximum joint deflections exhibited a trend of 

increasing deflection with time. 

Jacksonville, IL: U.S. Route 67, 1999 

U.S. Route 67 pavement design consisted of a 10 inch thick slab with transverse 

joints spaced at 15 foot intervals, Illinois Department of Transportation's (IDOT) new 

standard. This project continued the investigation of alternative dowel bars by placing FRP 

dowel bars from three manufacturers, an FRP tube dowel filled with hydraulic cement, 

carbon steel rods covered in stainless steel, and the standard epoxy-coated steel dowel bars. 

All dowels were 1.5 inches in diameter and spaced at 12 inches on center. At the time of the 

distribution of the status report, only one testing period had been analyzed with all dowels 

performing equally well. 

Dixon, IL: Route 2, 2000 

The Route 2 project is not an official TE-30 project, but it is a continuation of the 

previous projects conducted by the IDOT. The project was designed for an unspecified 

pavement thickness with transverse joints at 15 foot intervals. Preliminary results or findings 

are not available because the project was still in the construction phase at the time of the 

status report publication. The alternative dowel bars investigated for this project were: 

• Fiber-Con™ dowel bar, manufactured by Concrete Systems, Inc., consisting 
of FRP tube filled with hydraulic cement. 

• One and a half inch and 1.75 inch diameter, 0.109 inch thick grade 316 
stainless steel tubes filled with cement grout. 

• One and a half inch and 1.75 inch diameter carbon steel rods clad with grade 
316 stainless steel, manufactured by Stelax Industries Inc. 
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2.4.2 Kansas 

The Kansas Department of Transportation constructed an experimental project on 

Highway K-96 in Haven, Kansas. The projected focused on a wide variety of experimental 

features, with just one being alternative dowel bars. The basic pavement design was a 10 

inch thick slab, with transverse joints at 15 foot intervals, and 1.25 diameter inch epoxy 

coated steel dowels spaced on 12 inch centers. One experimental section consisted of 2 inch . 

diameter FRP tube dowels filled with high strength cement grout. The other alternative load 

transfer device was the X-Flex™ developed at Kansas State University. This device is 

constructed of 0.5 inch diameter epoxy-coated steel formed into a figure-eight shape, and 

placed on its side so that the joint is centered at the intersection of the two loops. KDOT has 

reported that the FRP dowel section has experienced one transverse crack and eight comer 

cracks, compared to the no cracking of the control section. Also, the joint faulting of the 

FRP dowel section is significantly larger at 0.08 and 0.25 millimeters in 1998 and 1999, 

respectively, compared to the control's 0.02 millimeters during both testing periods. 

2.4.3 Minnesota 

Richfield, MN: I-35W, 2000 

During the reconstruction of a portion of l-35W, the Minnesota Department of 

Transportation (MN/DOT) designed a pavement for a 60-year service life. Stainless steel 

clad dowel bars and solid stainless steel dowel bars were utilized within the experimental 

pavement, along with epoxy-coated steel dowels. Each dowel type had 1.5 and 1. 75 inch 

diameter dowel sections. The pavement was designed as a 13 .4 inch thick concrete slab with 

15 foot transverse joints. The sonstruction began in the summer of 2000 and no preliminary 

results were available. 
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MN/Road Low Volume Road Facility, 2000 

The MN/Road is a research facility to study the performance of asphalt, concrete, and 

aggregate surface roadways. The low volume ro~d runs parallel to I-94 and is exposed to 

controlled truck weight and traffic loading. Within the loop are heavily instrumented test 

sections. In 2000, three new test sections were added to consider several new topics, of 

which, included the study of long-term joint load transfer behavior of different dowel bar 

types. The test section was a 7 .5 inch thick pavement with 15 foot transverse joints, and 

included 1.25 and 1.50 inch diameter FRP dowels, 18 inches in length. These sections are to 

be compared to 1.0 and 1.25 inch diameter epoxy-coated steel dowels with a 15 inch length. 

2.4.4 Wisconsin 

In the summer of 1997, the Wisconsin Department of Transportation (WisDOT) 

constructed two experimental concrete pavements on Highway 29. One section located from 

Owen to Abbotsford, and the other from Hatley to Wittenberg. The Owen to Abbotsford 

section pavement design was an 11 inch thick pavement with transverse joints spaced at 

variable intervals of 17-20-18-19 feet. The Hatley to Wittenberg section was constructed 

with a variable thickness cross section, with an 8 inch slab at the passing lane edge that 

transitions to 11 inches at the driving lane pavement edge. Both sections utilized standard 

epoxy-coated dowel bars, four FRP dowel bars, and solid stainless steel dowels. The Owen 

to Abbotsford section also tested stainless steel tubes filled with mortar. The pavements have 

been monitored for three years using FWD testing and conducting visual surveys. The FWD 

testing indicates that the standard steel bars are performing slightly better than the FRP and 

stainless steel dowel bars. The visual distress surveys determined that the pavements were in 

excellent condition, with minor chipping and fraying of the transverse joints caused by joint 

sawing operations. 
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2.5 Falling Weight Deflectometer (FWD) 

Prior to the evolution of non-destructive testing (NDT), the evaluation of a pavement 

and sub grade's structural condition required destruction of pavement slabs by coring through 

the pavement. The condition of the core could then be inspected visually or by microscopy if 

so desired. The underlying subbase and subgrade soils could be analyzed by conducting in-

situ testing, ·such as a dynamic cone penetrometer, and laboratory testing, including 

classification and moisture contents determination. Although this type of pavement analysis 

produces adequate results, it is time consuming and leaves pavements less structurally sound. 

The introduction of the FWD and NDT for pavements has increased the speed of the 

analysis and does not structurally damage the concrete. The FWD generally consists of a tow 

vehicle and a trailer to house drop weights. The test consists of placing the FWD on the slab 

of interest and dropping the weight from a given height and measuring the pavement's 

deflection response. Varying the drop heights result in different applied loads, with typical 

loads varying from 9,000 to 16,000 pounds for highway pavements. The ability to test the 

pavement quickly with the FWD allows for a greater amount of the pavement to be evaluated 

in comparison to the destructive coring methods. With more tests covering a larger area, the 

pavement can be defined better and changes over the length of pavement may be seen. 

As previously stated, the FWD drop weight is typically housed in a trailer. It is 

mounted on a vertical shaft that allows drop heights ranging from 2 to 20 inches [29]. The 

weight is dropped onto an 11.8 inch diameter rubber buffer with a thickness of 0.22 inches. 

The resulting load is a force impulse that last approximately 30 milliseconds, compared to 

the typical 120 millisecond pulses from a truck traveling at 50 miles per hour [30]. The 

resulting impulse load has been shown to produce similar deflections caused by moving 

wheel loads [29]. 
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The deflection response of a pavement when struck with the impulse load is measured 

by geophones. A geophone measures an output voltage proportional to the velocity of the 

base of the unit [31]. The basic idea of the geophone is that a mass will tend to stay 

motionless due to its inertia. In a geophone, the mass is wrapped with a wire and surrounded 

by a magnet that is fixed or set on the pavement slab. As the slab moves, the magnet will 

move, thus creating an electrical voltage in the wire that can be amplified and recorded by a 

voltmeter. The voltage can then be converted into a distance that the magnet moved, which 

coincides with the slab movement. Figure 2 is a schematic of a geophone. 

Mass surrounded 
b y coiled wire 

Amplifier 

'9V 
Wir.e 

Figure 2. Geophone schematic. [31) 

The deflections recorded by the geophones at certain distances from the load .plate 

can be utilized to determine characteristics of the pavement and soil. Several models have 

been developed to determine the moduli of the pavement and soil. The Strategic Highway 

Research Program (SHRP) has conducted an exhaustive study comparing two of the most 

widely used, the Best Fit Method and the AREA Method [32]. The study suggests that the 
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models are comparable, with the Best Fit Method having a slightly lower coefficient of 

variability. Both these methods are based on W estergaard's plate theory of a linear elastic, 

homogeneous, and isotropic material resting a dense liquid foundation [33,34]. 

The Best Fit Method utilizes an algorithm that finds a combination of concrete 

modulus of elasticity and modulus of subgrade reaction for which the calculated deflection 

basin closely matches the measured basin. The AREA method utilizes the AREA parameter 

based on the Trapezoidal Rule, along with a dimensional analysis based equation for the 

modulus of subgrade reaction developed by Ioannides [35]. 

This research project will utilize the AREA method due to the ease of calculation 

with the closed-form solution, allowing calculations to be performed on a standard 

spreadsheet without the need of a computer program. The closed-form solution also allows 

for relatively quick analysis of the vast amount of data to be analyzed. 

Along with the material moduli analysis, the deflection responses and corresponding 

deflection basins provide additional infomiation. The pavement's ability to transfer loads 

from loaded slabs to adjacent unloaded slabs, termed load transfer efficiency, can be 

evaluated utilizing deflections from opposite sides of a joint. The deflections are measured 

by geophones located at equal distances from the joint. The load transfer efficiency is defined 

as the deflection of the unloaded slab at a distance from the joint equal to the deflection at the 

load. If the deflections are approximately equal, there is 100% load transfer. The greater the 

load transfer, the less load each slab will have to support thus reducing fatigue and increasing 

the pavement's life. 

The shape of the deflection basin is also indicative of the strength of the different 

layers. Foinquinos et al. [29] investigated the effects of varying the layer stiffness of the 
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pavement, base, and subgrade. It was determined that when compared to a pavement with all 

three layers stiff, a weaker pavement will result in greater deflections at the joint but sensors 

at a greater distance from the load will experience little change. A weaker base layer 

produced similar results, but the increase in deflection at the joint was magnified slightly, 

along with a greater change at more distant sensors. A weak subgrade will also create larger 

deflections at the joint, but different from the pavement and base layers, the increased 

deflections continue as the distance from joint increases. This creates a deeper and wider 

deflection basin. Figure 3 presents the findings of Foinquinos et al. 
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Figure 3. Sensitivity of deflection basins to changes in stiffness of the layers: (a) and (b) 
surface layer, (c) and (d) base layer, (e) and (f) subgrade layer. [29] 
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3 RESEARCH PLAN 

3.1 Site Review 

The research test site is located in the southeast comer of Des Moines, Iowa as part of 

the US 65 bypass built during the summer of 1997. Figure 4 shows the project location. 

This portion of the bypass project consisted of both northbound and southbound lanes from 

the US 65/69 interchange to the IA 5 interchange, totaling 2.69 miles. The concrete 

pavement was designed as a 12-inch plain jointed pavement on 6 inches of granular base 

coarse with transverse joints skewed at 6: 1 in the counterclockwise direction. The lane 

widths for the driving and passing lanes were 14 feet and 12 feet, respectively, with 8 inch 

depth asphalt shoulders extending the highway an additional 8 feet and 6 feet for the driving 

and passing lanes, respectively. Transverse and longitudinal joints were sealed using a hot-

poured sealant. Longitudinal subdrains were installed under the outside shoulder and 

adjacent to the driving lane. Subdrains were not placed adjacent to the passing lane. The US 

65 bypass was designed according to Iowa DOT 1992 specifications. 

Of the total 2.69 miles, the project test sections consisted of 2,432 feet of continuous 

pavement of the southbound lanes between stations 620+03 to 644+35. The pavement was 

divided into four different test sections: two sections incorporating fiber composite dowels, 

one stainless steel dowel section, and a control section containing standard epoxy coated 

bars. Three sections were further subdivided to provide test sections with 8 inch and 12 inch 

spacing for both the stainless steel and fiber composite dowel bars. The experimental design 

and layout is illustrated in Table 7 and Figures 5 and 6. 
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Figure 4. Project site location. 

Table 7. Experimental design matrix. 

12-inch Thick JPCP 
20-ft Joint Spacin2 (6:1 skew) 

8-in Dowel Spacing 12-in Dowel Spacing 

1.5-in 1.88-in 1.5-in 1.88-in Diameter Diameter Dowel Diameter Dowel Diameter Dowel Dowel 
Section 1 Section 2 

Fiber Composite Dowel 
Sta. 620+03 to Sta. 624+63 to Bars 

624+43 628+80 
Section 3 Section 4 

Fiber Composite Dowel 
Sta. 629+00 to Sta. 630+20 to Bars 

630+00 631+00 
Section 5 Section 6 

Stainless Steel Dowel Bars Sta. 631 +20 to Sta. 633+82 to 
633+42 639+38 

Section 7 
Epoxy-Coated Steel Dowel 

Sta. 639+58 to Bars 
644+35 



www.manaraa.com

29 

Section Three Section Four 

1.5 inch FRP 1.5 inch FRP 
----- ---- ----- U.S. 65 Northbound 

8 inch Spacing 12 inch • Spacing 

Section One Section Two 
~, ~, 

Section Five Section Six Section Seven 

1.88 inch FRP. 1.88 inch FRP 1.5 inch 1.5 inch Stainless 1.5 Epoxy 
Stainless Steel Coated Steel 

8 inch 12 inch Steel 

Spacing Spacing 8 inch 12 inch Spacing 12 inch 
Spacing Spacing 

440 ft 417 ft 100 ft 80 ft 222 ft 556 ft 477 ft 

Figure 5. Experimental layout. 

t 
t Outer Traffic Lane 

Inner Traffic Lane 

12 dowels @ 12-in spacings 

12 dowels@ 12-in spacings 

aj 12 in Spacings 

t t 
Outer Traffic Lane 

Inner Traffic Lane 

18 dowels@ 8-in spacings 

1 8 dowels @ 8-in spacings 

b) 8 in Spacings 

Figure 6. Dowel bar spacing configurations. 
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The test section is located near the bottom of a vertical curve, with both downhill and 

uphill sections. The changing vertical grade along with the natural landscape created test 

sections with sub grade soils consisting of both native soils and structural fill soils. Pavement 

sections with 1.88 inch diameter FRP dowels are located on fill soils up to approximately 

station 626+60. At this location the subgrade switches to native soils and continues to the 

end of the 1.88 inch diameter FRP test sections. The subgrade transitions back to fill at the 

beginning of the 1.5 inch diameter FRP test section, and continues to station 635+90. The 

sub grade from station 636+90 to 639+ 10 consists of native soils. From station 639+ 10 to 

644+35, the remaining portion of the test section is supported by structural fill. 

3.2 Dowel Bar Materials 

As previously stated, three different dowel bar materials were investigated. Three 

companies that manufacture fiber composite dowels were interested in • supplying their 

products for project. Two companies were selected based on the speed at which they could 

provide the dowel bars. In addition to supplying the dowel bars, the FRP dowel companies 

also supplied tie bars to install across the longitudinal joints. The stainless steel dowel bars 

with a 1.5 inch diameter were supplied by a separate company selected on similar criteria. 

The alternative materials meet the Iowa DOT specifications for flexure, shear, and 

moment required by IDOT specification #4151, Steel Reinforcement. The alternative dowel 

diameters were selected to provide similar structural characteristics for load bearing capacity 

as the standard 1.5 inch diameter steel dowel bar. The dowel diameters utilized were 

selected by the manufacturer according to their testing and experimental research. Dowel bar 

properties determined by ISU laboratory testing were provided in Tables 4 and 5. 
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3.3 Construction 

Flynn Construction Company of Dubuque, Iowa constructed the test site m the 

summer of 1997 with Iowa State University and Iowa DOT staff overseeing the development 

of the test sections. The location of dowels was recorded for each segment, along with 

construction procedures used by the contractor to install the dowel bars. Dowel "baskets" 

were utilized to place the dowel bars at the appropriate height and alignment. Dowels are 

typically set on the baskets and one end of the steel dowel is spot welded to a brace loop to 

prevent dowel movement during paving. Also by welding only one end, the pavement is free 

to move longitudinally due to temperature gradients. Figure 7 is a schematic of the dowel 

and dowel basket setup. The spot weld on successive dowels within each joint is performed 

on alternating ends. 

Pavement Surface 

12" 

ff' 
Granular Base 

Figure 7. Dowel basket and dowel location schematic. [36] 

Not Drawn to Scale 

Dowel 

Steel dowel baskets were utilized for both the epoxy coated steel and FRP dowel bars. 

Stainless steel baskets were used for the stainless steel dowels. All dowels were shipped to 

the project site mounted on the dowel baskets. During shipment, many of the dowels became 
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loose and one end of the dowel bar was required to be re-secured to the basket. Spot welding 

the fiber composite and stainless steel to baskets was not an option due to degradation of the 

material from the heat generated during welding. Therefore plastic zip ties were tied around 

each brace loop and end of the dowel, with excess tie length trimmed before paving. 

Tie bars were installed across the longitudinal joint separating the two lanes to ensure 

load transfer between the two lanes. The tie bars were 0.5 inches in diameter and 36 inches 

long, with 30 inch on center spacing. The tie bars were mechanically inserted by the paver at 

slab mid-height. While installing the FRP tie bars, the bars tended to "float" up to or through 

the pavement surface [36]. This problem was attributed to: 

• the automatic tie bar inserter on the paver malfunctioning due to the slightly 
smaller diameter of these tie bars compared to the standard tie bars, and 

• the light weight of the FRP tie bars allowed the roll of concrete to move the tie 
bar longitudinally and allow final vibration to bring them through the surface. 

To correct the problem, laborers hand pushed the tie bars back into the pavement to 

approximately slab mid-depth. The installation of FRP tie bars was then stopped, and epoxy 

coated steel tie bars were placed in the remainder of the section. 

3.4 Testing Program 

The research objective was to evaluate the performance of alternative dowel bars and 

dowel bar spacing, and compare them to standard epoxy coated steel dowels spaced 12 

inches on center. The evaluation process consisted of joint faulting, joint opening, and FWD 

tests and visual monitoring of the pavement over a 5-ye·ar testing period. The testing was 

conducted on a biannual basis with tests conducted once in the spring and once in late 

summer or early fall. The test times were selected to evaluate the pavement with a typically 

wet, weak foundation in the spring and a dry, strong foundation in the summer or fall. 
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3.4.1 Falling Weight Deflectometer 

The falling weight deflectometer (FWD) is a trailer mounted machine that uses non-

destructive test methods to measure the response of a pavement section to a dynamic load 

similar in magnitude to that produced by a moving vehicle tire load. A schematic of a FWD 

machine is shown in Figure 8. The pavement's deflection response due to the dynamic load 

is measured by geophones, placed at 12 inch intervals, and collected in a computer installed 

in the tow vehicle. The observed deflection responses of tests performed at the joint provide 

information of load transfer efficiency, while tests conducted near the center of slabs indicate 

pavement and subgrade stiffness. The information can then be analyzed to give an indication 

of the pavements performance and expected life of each joint tested. 

Power Source from 
Towing Vehicle 

r------------'cw;,----

FWD Trailor 

Denection Sensors {geophones} 

Figure 8. FWD schematic. [8] 
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FWD tests were conducted in the outside wheel, 2 feet (0.6 meters) from the outer 

edge, on three transverse joints and three mid-panel locations per test section per lane. Three 

. dynamic loads of 9000, 12000, and 16000 pounds were applied at each test location, with 

results averaged to provide more accurate information at each location. The variability of the 

test data at each joint is not important to the scope of the research, but provides a means of 

statistical analysis to determine any significant difference between joints of different test 

sections. Figure 9 provides a schematic of a FWD test and a typical pavement deflection at 

the geophone locations in response to the impact loading. 

do 

Trailer Mounted 
FWD 

Measured Deflection 
Basin 

Figure 9. Typical shape of deflection response to loading. [8] 

Sub-base 

Sub-grade 
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3.4.2 Joint Openings 

Concrete pavements will expand or shrink due to temperature changes according to 

their coefficient of thermal expansion, which is dependent on the materials used in the 

concrete mix. To avoid problems associated thermal expansion such as cracking or blow-

ups, transverse joints are constructed to allow free horizontal movement. Therefore, joint 

openings were monitored to ensure the joints were allowed to freely move. This testing was 

conducted by placing surveyor nails into the fresh, plastic concrete at approximately 10 

inches apart. The center to center distance between the nails was measured utilizing a digital 

caliper. The joint openings were measured at approximately the same time as the FWD 

testing. 

3.4.3 Joint Faulting 

Over time concrete pavements may start to exhibit joint faulting, which is the 

presence of a vertical discontinuity between adjacent slabs. If the faulting is severe enough, 

it will affect the ride quality of the pavement along with creating the possibility of pumping 

subgrade soils, which in turn will create voids below the pavement and reduce the strength of 

the pavement system. 

Joint faulting was measured using an electronic Georgia Faultmeter (Figure 10) with 

a digital readout that indicates positive or negative faulting in millimeters. The Faultmeter 

was set on the pavement in the direction of traffic, with the legs on the "leave side" of the 

joint and the measuring probe in contact with the approach slab. Movement of the probe is 

then transmitted to a Linear Variance Displacement Transducer (L VDT) to measure faulting. 

A slab that is lower on the leave side of the joint will register as a positive faulting, and a slab 

leaving the joint which is higher, will register as a negative fault. Figure 11 is a schematic of 
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the positive and negative faulting. Faulting was measured in millimeters for both the inside 

and outside wheel-paths of the driving lane at 30 inches and 18 inches from the edge, 

respective I y. 

Figure 10. Georgia faultmeter. 

3.4.4 Visual Survey 

Gngia fu.Jltmm-

Ftsiti\C fuulting N::gpt:i\C faulting 

Figure 11. Faulting schematic. [37) 

Along with the quantitative analysis of the pavement's performance, a visual survey 

of the pavement was performed. The visual surveys identified distresses that occurred 

between testing periods and were conducted accordance to the Long Term Pavement 

Performance standards [38]. The surveys were performed at the same time the joint opening 

and faulting data were collected. 
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4 DATA ANALYSIS 

4.1 Traffic Data 

The amount of traffic loading experienced by the highway will impact the 

performance of a concrete pavement due to fatigue. Therefore traffic was monitored through 

the use of weigh-in-motion sensors placed in the driving lane of the west bound lane. These 

sensors are capable of detecting the weight and number of axles of passing vehicles. This 

information can then be used to determine the number of 18,000 pound Equivalent Single 

Axle Loads (ESAL's) through the use of an Iowa DOT computer program. Traffic data was 

available beginning in January of 1999 through the end of the 2001 calendar year, and is 

presented in Table 8. 

Table 8. Traffic data. 

Year 

1999 

2000 

2001 

Totals 

Accumulated 18-kip ESAL 
Applications 

651,633. 

678,767 

2,176,982 

3,507,382 

The large increase in the number of ESAL's experienced in the 2001 calendar year 

was mainly due to a large number of 7-axle trucks during the month of August. During this 

month, the sensors indicated that an average of 9,110, 7-axle or more trucks passed over the 

sensors on a daily basis. This can be compared to the average of 14.5, 7-axle trucks per day 

for the other eleven months of the same calendar year, with the second highest monthly 

average of 72 trucks per day. The large number of 7-axle trucks during August would be 
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indicative of a construction project utilizing the highway to haul soil, concrete, and other 

supplies to the project site. The project was most likely the reconstruction of Iowa Highway 

5 which consisted of placing structural fill, concrete paving, and bridge construction. The 

number of 7-axle trucks is consistent and reasonable prior to, and after August, which would 

indicate the sensors were performing correctly, meaning the data are not erroneous. 

4.2 Visual Distress Survey 

A visual distress survey was conducted to record any_joint or slab deterioration that 

might affect the transverse joint load transfer. The survey was conducted at the same time 

joint faulting and opening measurements were obtained. It consisted of identifying changes 

in joint openings, cracking, or spalling of transverse or longitudinal joints. The survey was 

conducted in accordance with the Strategic Highway Research Program (SHRP) pavement 

distress manual. 

The visual distress survey indicated that the pavement is in good condition, with no 

cracking or spalling except for one corner crack. The comer crack was first noticed in the 

spring of 1999 and extended 3 feet to the south and 1 foot to the west. The crack size or 

width has not propagated with time. 

4.3 Deflection Data 

Deflection testing for the project was conducted by Eres Consultants, Inc. of 

Champaign, Illinois. The testing occurred twice a year, with data from the fall of 1997 

through the fall of 2001 available at the time of this thesis. Deflection measurements were 

recorded at transverse joints and at the mid-slab, for the outside wheelpath for both the 

passing and driving lanes. Readings were obtained for load levels of 9,000, 12,000, and 

16,000 pounds after the load plate was set with a small load to eliminate any voids between 
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the rubber buffer and pavement. The FWD utilized for this project was composed of 7 

sensors spaced at 12 inch intervals as depicted below in Figure 12. All deflection data was 

recorded in mils, which is equal to one-thousandth of an inch. 

Geophones 

Load Plate 

Figure 1~. FWD geophone layout. (8) 

4.3.1 Load Transfer Efficiency 

The FWD deflection testing targeted applied loads of 9,000, 12,000, and 16,000 

pounds. However, due to variations in the pavement stiffness the actual loads generated by 

the FWD will vary slightly from the targeted loads. Therefore, to provide a means to 

accurately compare the deflections at different locations and joints, the actual pavement 

deflections were normalized utilizing linear interpolation. Validation of the normalization 

procedure was conducted by generating a best-fit line through the three data points from each 

load level for several locations, and determining the coefficient of determination, R-squared. 

The R-squared values indicate how much of the variance in the deflection data is explained 

by the load levels. A value close to 1.0 would indicate that the three data points nearly fall 

on the same line with a constant slope. Thus, most of the variance in the deflections are due 

to the load levels, validating the normalization procedure. An example of a typical validation 

graph with equations and R-squared values is presented in Figure 13. 
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20.00 ___ y=0.0009x_ 
17.50 __,__ ______________ y2:0.00lx __ .-R2=0.9953 

,-.__ 

.~ 15.00 +-----------------=_...-~--=--=------ y=0.0008x 
5 12.50 R2 = 0.9966-

s::: .g 10.00 +---4~~==-------:=,,,...-=--------y=0.0003x 

7.50 R2 = 0.9879-----

0 5.00 +-~~;:::;;;~;;;;;_.iiiiiiiiiiiiiiii~liFll!!!III!!~~~~~====~~ y: 0.0003x_ 
Y= 0.0003x __ R = 0.9961 2.50 -+-----------------
R2 = 0.9926 0.00 ------.------------'----.-- ~----

10,000 12,000 14,000 16,000 18,000 20,000 

Load (lb) 

Test 1 Test 2 • Test 3 x Test 4 :::K Test 5 • Test 6 

Figure 13. Example verification of normalization by linear interpolation for stainless 
steel driving lane section in the Fall 1999.-

Load transfer efficiency for this project is defined as the ratio of the deflection of an 

unloaded pavement to that of the adjacent loaded pavement, denoted as a percentage. Load 

transfer can be defined is this manner because deflections are a function of the stress applied. 

Therefore, the deflections on either side of the joint, provided they are equal distance from 

the joint, will give an indication of the load transfer. Using sensors closest to the joint reduce 

the effects of concrete variability. Deflections were recorded at the load plate, denoted do, 

and every twelve inches up to 72 inches, denoted dr where "r" is the distance from the load 

plate in inches. Therefore, the equation to determine load transfer efficiency is: 

Equation 1 

The load transfer analysis was broken into the driving and passing lanes due to 

differences in construction, in which only the driving lane had longitudinal drains. The data 

are shown graphically in Figure 14, which present the research lifetime averages for each of 
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the dowel bars and spacing. Additional graphs breaking the data down into fall and spring 

averages over the pavement research life can be found in the Appendix A. 
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Figure 14. Average load transfer efficiency for pavement research lifetime. 

By analyzing Figure 14 and the figures in the Appendix A, several general 

comparisons can be made between the current dowel design standard of epoxy coated steel 

spaced at 12 inches and the alternative dowels. The current design standard is currently 

outperforming the alternatives in load transfer with the exception of stainless steel dowels 

spaced at 8 inches. Stainless steel at 12 inches and 1.5 inch FRP dowels spaced at 8 inches 

load transfer efficiency is slightly lower than the epoxy coated steel. 

The similar load transfer efficiency between the stainless steel and epoxy coated steel 

is expected due to their similar stiffness and shear capacities. However, the lower pullout 

strength (bond strength) for the stainless steel dowel bars may have influenced the lower load 
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transfer. Increased load transfer efficiency from decreased dowel spacing is also expected 

due to presence of more dowels near the loaded area. A somewhat unexpected result is the 

similar performance between the 1.5 and 1.88 inch diameter FRP dowels at 12 inch spacing. 

If the dowel bar diameter is increased, the result should be a lower bearing stress which 

intuitively one would think should result in better load transfer. However, Porter et al.[16] 

concluded that this may not happen due to smaller modulus of dowel support for larger 

dowel diameters. The modulus of dowel support is defined as reaction per unit area when the 

deflection is equal to unity. A lower modulus of dowel support will result in a lower relative 

stiffness of a dowel bar encased in concrete. 

The figures also illustrate that for almost all alternative dowel types, the 8 inch 

spacing is performing better than the 12 inch spacing. The load transfer efficiency increased 

between 6 to 8 percentage points for the stainless steel and 1.5 inch FRP. The 1.88 inch FRP 

test results indicate very little to no increase in load transfer efficiency. 

These results compare favorable to the laboratory investigation conducted by Porter 

et. al [ 16]. From their research, Porter et al. proposed a design scheme as presented in the 

literature review of this paper, in which they recommend that for pavements greater than 10 

inches in thickness, FRP dowel diameters should remain the same as the standard but the 

spacing be reduced from 12 inches to 6 inches. The results of this field study, utilizing the 

same FRP dowels, indicate that compared to the current standard dowel design, increasing 

the FRP dowel diameter does not affect the load transfer efficiency but decreasing the 

spacing of the 1.5 inch diameter dowel increases the load transfer efficiency. 
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The results were also analyzed to determine if a trend was developing for load 

transfer efficiency over time. Figure 15 illustrates the average load transfer efficiency over 

the nine testing periods. 

Figure 15 does not indicate any general trend exists for load transfer over time for the 

dowel bars or spacing. The data indicate that the alternative dowels with both spacings were 

performing nearly as well as the standard epoxy coated steel for the first three testing periods. 

The load transfer was generally in the mid to upper 80 percentile for each test section with 

the exceptions of the stainless steel and 1.88 FRP dowels at 12 inch spacing during the spring 

of 1998, with load transfers of 79% and 76%, respectively. After the third testing period 

most test sections experienced a decrease, but a larger decrease was experienced by the 12 

inch spaced stainless steel and 1.5 inch FRP dowels, along with both 12 inch and 8 inch 

spaced 1.88 FRP dowels. Figure 15 also shows that the spring testing periods generally 

produced load transfer results lower than the fall, which was expected due to the softer 

subgrade soil. 
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Figure 15. Chronological average load transfer efficiency over all testing periods. (a) 
driving lane, (b) passing lane. 
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4.3.2 Maximum Joint Deflections 

The normalized data was also utilized to analyze the differences between the 

maximum joint deflections for each dowel type and spacing. The point of maximum 

deflection was recorded by sensor do, located directly over the load plate. All deflections 

were normalized to represent the deflection from a 9,000 pound load. 

Figure 16 illustrates the average maximum deflection over the pavement's research 

life. The joint deflections for the passing lane are higher than the driving lane for all dowel 

types and spacing, with all passing lane deflections more than 1 mil larger, except the 1.88 

inch diameter FRP section at 8 inch spacing. The most likely explanation to why the passing 

lane deflections are great is due to the absence of the longitudinal drains along the passing 

lane. The drains expatiate the removal of water from the sub grade soils, thus increasing the 

soil stiffness. Also, as will be discussed in Section 4.3.5, the concrete modulus of elasticity 

is larger in the driving lane than for the passing lane. The modulus of elasticity describes the 

materials stiffness, therefore the lower modulus of elasticity of the passing lane will 

correspond to greater deflections at the same load levels. 

When comparing the treatments within each lane in Figure 16, the maximum joint 

deflections are generally within 0.5 mils. The only sections varying significantly more than 

0.5 mils are the 1.88 inch diameter FRP at 8 inch spacing in the passing lane and stainless 

steel dowels spaced at 8 inches in the driving lane. Additional joint deflection graphs can be 

found in Appendix B. 
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Figure 16. Average maximum deflection for the pavement research lifetime. 

4.3.3 Backcalculation of Layer Moduli 

The FWD tests conducted at the section's mid-slab can be utilized to analyze the 

pavement and subgrade moduli. The moduli are determined through a closed form 

backcalculation procedure based on Westergaard' s plate theory model. Several parameters 

must be calculated during this procedure. They include the area of the deflection basin 

(AREA), radius of relative stiffness (lk), modulus of subgrade reaction (k), and the concrete's 

modulus of elasticity (E). The deflection basin area calculation is based on the trapezoidal 

rule using the following equation: 

Equation 2 

where dr = deflection measured r inches from the applied load. 



www.manaraa.com

47 

The AREA parameter is calculated using raw data, not the normalized data discussed 

above and used for the load transfer and maximum deflection analysis. The AREA is 

normalization by dividing each deflections at each sensor by the maximum deflection, do. 

Therefore, any variations in the deflections due to the applied loads are removed. 

Prior to the determination of the moduli, the AREA parameter must be used to 

estimate the radius of relative stiffness, lk. Westergaard defines the radius of relative 

stiffness as the ratio of the stiffness of the slab or pavement to the stiffness of the foundation 

soils. If the foundation is modeled as a dense liquid, the radius of relative stiffness can be 

calculated using the following equation: 

Where: E = Concrete modulus of elasticity 
µ = Concrete Poisson ratio 
k = Modulus of sub grade reaction. 
~=Concrete thickness. 

Equation 3 

However, it has been shown that the radius of relative stiffness can be estimated 

utilizing the AREA parameter of a seven sensor FWD by utilizing the following equation 

[39]: 

Ik = ln[72 -AREA]~ 2
·
205 

242.385 

Equation 4 
The modulus of subgrade reaction, k, provides an estimation of the soils ability to 

-0.442 

carry loads and is the ratio of the stress applied to induce a displacement of unity, meaning 

one unit of the measurement system employed, such as inches or centimeters. The modulus 

of subgrade reaction is reported as a load per area per unit of deflection and can be estimated 

from the measured deflections in pounds per cubic inch with Equation 5 [39]: 
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k = Pd: 
d 12 

r k 

Where: P = Load magnitude 
dr = Measured deflection at distance r from the load plate 
d/ = Nondimensional deflection coefficient for radial 

distance r: 

d/ = a Exp r-b Exp (-ch )l 

Equation 5 

where a, b, and care constants based on the distance from the 
applied load. 

Equation 5 requires deflection measurements at only one sensor location to determine 

the subgrade reaction, with the sensor distance from the load plate taken into account by the 

nondimensional deflection coefficient. Therefore, the deflections from each of the seven 

sensor locations were utilized to determine the subgrade reaction and then averaged to 

determine the subgrade reaction for that test. The procedure was followed for each load 

increment at each test section, with the affect of different loads handled by using the 

maximum deflections to normalize the data while determine the AREA term. 

With the modulus of sub grade reaction and radius of relative stiffness determined, the 

modulus of elasticity of the concrete pavement can be determined rearranging Equation 3 

(Equation 6) if Poisson's ratio is assumed. The concrete modulus of elasticity is the ratio of 

the stress applied to the strain experienced. Poisson's ratio is the longitudinal strain divided 

by the transverse strain, and is typically between 0.10 and 0.20 for concrete [ 40], with this 

research project assuming a Poisson's ratio of 0.15. 

Equation 6 
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4.3.4 Modulus of Subgrade Reaction 

The modulus of subgrade reaction determined from FWD testing is a dynamic 

modulus calculated from an impact load. The effect of a dynamic load on the modulus of 

subgrade reaction results in a value approximately double the static modulus of subgrade 

reaction utilized for pavement design. Therefore, the presented values should be divided by 

2 if they were to be used in a design or compared to typical values. 

The modulus of subgrade reaction was analyzed to find differences with in test 

sections, testing season, lane, and type of subgrade material. The changes in subgrade over 

time were also investigated and presented in Appendix C. 

Figure 17 illustrates the modulus of subgrade reaction over the pavement's research 

lifetime. The figure is broken into driving and passing lanes. There appears to be little 

difference between treatment types within a lane. However, a significant difference exists 

between the driving and passing lane for each treatment, with the driving lane having soils 

with much larger modulus of sub grade reactions. 

The driving lane was constructed with longitudinal drains in all test sections, but the 

passing lane did not. The drains allow for water to escape from the subgrade soils quicker, 

alleviating any excess pore pressures that may develop, particularly in the spring when soils 

thaw. A soil that does develop excess pore pressures that cannot be alleviating quickly, will 

be weaker due to lower effective stress. 
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Figure 17. Research lifetime average modulus of sub grade reaction. 

Change in the modulus of sub grade reaction over time was analyzed in Figures 1 C 

through 3C, which can be found in Appendix C. The figures indicate that the subgrade 

modulus of reaction changed over time, but do not show a trend indicating loss of sub grade 

support. A loss of subgrade support would be expected if pumping occurred due to 

inadequately performing dowels. 

Figures 18 and 19 illustrate the change in modulus of subgrade reaction between 

testing periods. Figures 18 and 19 indicate the majority of the test sections did not 

experience a large change between the spring and fall testing periods. The stainless steel 

placed in the driving experienced the greatest amount of change, on the order of 40 pounds 

per cubic inch (pci). Also of interest is that in the driving lane, the spring values are 

generally higher than the fall. It is typically expected that a pavement subgrade would be 
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weakest in the spring due thawing and the development of excess pore pressures. In the 

passing, the only treatments indicating change between seasons were the epoxy coated steel 

and 1.88 inch diameter FRP, which had spring values approximately 20 and 25 pci higher, 

respectively. The spring values in the passing lane generally follow the expected trend of 

lower spring values, but the differences are very small. 
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Figure 18. Comparison between the research lifetime averages of the modulus of 
subgrade reaction in the fall versus spring for the driving lane. 
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Figure 19. Comparison between the research lifetime averages of the modulus of 
subgrade reaction in the fall versus spring for the passing lane. 

The effect of the subgrade material on the modulus of subgrade reaction was also 

analyzed. The project site subgrade consisted of sections with both natural existing soils and 

structural fill. An analysis of the location of soil types concluded that the only treatment 

constructed on native soils was the section with 1.88 inch diameter FRP dowels with 12 inch 

spacing. When the modulus of subgrade reaction for that section was compared with all 

others, it was concluded that the fill soils have a slightly higher modulus than the 

corresponding structural fill soils. Figure 20 illustrates the differences for several means of 

comparison, such as an overall mean, fall mean, spring mean, and differences in the driving 

and passing lane. 
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Figure 20. Effect of subgrade type. 

The final analysis conducted for the modulus of subgrade reaction was to analyze the 

effects the modulus had on load transfer and joint deflections. Figure 21 displays both the 

modulus of sub grade reaction and load transfer efficiency for -each dowel bar type and 

spacmg. The modulus of subgrade reaction was consistently lower in the passing lane, but 

the load transfer efficiency was higher. Also, there is no correlation between increasing or 

decreasing the modulus of sub grade reaction resulting in increased or decreased load transfer. 

This would indicate that the modulus of subgrade reaction was not a controlling variable in 

the pavement's ability to transfer load. 
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Figure 21. Effect of modulus of subgrade reaction on load transfer efficiency, based on 
research lifetime averages. 

Figure 22 illustrates the relationship between the modulus of subgrade reaction and 

joint deflections for each dowel bar type and spacing. The figure depicts that when 

compared to the driving lane, the lower modulus of subgrade reaction of the passing lane 

corresponded with larger joint deflections. Greater joint deflections occur at lower modulus 

of subgrade reaction due to a less stiff soil, which will deflect more under similar loads. The 

increased joint deflection also is affected by the decrease in lower concrete modulus of 

elasticity in the passing lane, as will be discussed in Section 4.3.5. Figure 22 also depicts 

that within each lane, there is not a strong pattern indicating that increasing modulus of 

sub grade reaction will result in decreased joint deflection. 
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Figure 22. Effect of modulus of subgrade reaction on joint deflection, based on 
research lifetime averages. 

4.3.5 Concrete Modulus of Elasticity 

The results of the backcalculation procedure for the concrete modulus of elasticity for 

each treatment type is presented in Figure 23. The values presented are the research lifetime 

average for each treatment type, broken into driving and passing lanes. A graphical 

comparison of the concrete modulus of elasticity over the pavement lifetime is presented in 

Appendix D. The graphs indicate all treatment types are changing in approximately the same 

way over time. 

The values recorded are higher than what is normally expected for concrete. Mindess 

and Young [ 40] suggest the modulus of elasticity for concrete should range between 2 to 6 

million psi. However, they also indicate that moduli determined from dynamic loading will 

generally be 20 to 30% higher, resulting in a modulus of elasticity ranging between 2.4 and 

7.8 million psi. Review of the equation used to calculate the modulus of elasticity (Equation 
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6), will show that the modulus of subgrade reaction is found in the numerator. As discussed 

in the previous section, the dynamic modulus of subgrade reaction is approximately double 

the static modulus of subgrade reaction. If this is taken into account and the modulus of 

elasticity values are divided by two, the results are. within the typical values stated by 

Mindess and Young, indicating the FWD and backcalculation procedures are a valid 

analytical process. 
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Figure 23. Average concrete modulus of elasticity for the pavement research lifetime. 

Figure 23 also indicates that the concrete modulus of elasticity in the driving lane is 

larger than the passing lane for each dowel bar type and spacing. In the driving lane, the 
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epoxy coated steel sections exhibited the largest modulus of elasticity, followed by the 

stainless steel sections, and finally the FRP sections. The 8 inch spacing for the stainless 

steel and 1.5 inch diameter FRP resulted in higher modulus of elasticity values if compared 

to the 12 inch spacing. The modulus of elasticity in the passing lane did not show as much 

deviation between the different test sections. The 1.88 inch diameter FRP with 8 inch 

spacing had the highest moduus of elasticity, followed by 5 treatments with similar results, 

and then the 1.5 inch diameter FRP sections having the lowest values. 

Figure 24 provides a comparison between the concrete modulus of elasticity and load 

transfer efficiency. A general trend exists between the modulus and load transfer, with a 

higher load transfer efficiency corresponding with a higher modulus of elasticity. The trend 

is more defined for the driving lane than the passing. This is most likely due the small 

variation in concrete modulus of elasticity of_ the test sections within the passing lane. The 

higher load transfer with higher modulus of elasticity can be explained by the effects of load 

transfer and fatigue. If a pavement slab has a high load transfer efficiency, lower stresses 

will be observed within the slab. Lower stresses from repetitive traffic loads will result is 

less fatigue, which is the loss of elasticity and strength due to cyclic stresses. 
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Figure 24. Comparison between the research lifetime averages of the concrete modulus 
of elasticity and load transfer efficiency. 

Figure 25 compares the concrete modulus of elasticity to the maximum joint 

deflections for each of the dowel bar types and spacings. The passing lane consistently has 

lower modulus of elasticity values in comparison to the driving lane, while at the same time 

the joint deflections are greater for the passing lane. The lower modulus of elasticity in the 

passing lane is most likely the result of increased stresses in the slab due to the lower 

modulus of subgrade reaction in the passing lane. The effects of fatigue on the passing lane 

is therefore a result of lower modulus of subgrade reaction, not due to traffic loads, which 

would generally be lower in the passing lane. If the treatment types within each lane are 

compared, the general trend continues, with higher modulus values corresponding to smaller 

joint deflections. 
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The result of increased joint deflection with decreasing concrete modulus of elasticity 

is exactly what would be expected. Modulus of elasticity, by definition, is the stress divided 

by the strain. A higher modulus of elasticity should therefore result in the material 

deforming less under the same loading conditions. 
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Figure 25. Comparison between research lifetime average maximum joint deflection 
and concrete modulus of elasticity. 

4.3.6 Joint Faulting 

As stated in the research plan, the pavement faulting was monitored with the Georgia 

Faultmeter. Faulting measurements were obtained for both the inside and outside wheel path 

in the driving lane only. The analysis consisted of looking at the overall research lifetime 

average and wheel path averages for all treatment types, with the results illustrated in Figure 

26. 

· Figure 26 indicates the epoxy coated steel sections experienced the least amount of 

faulting. The also appears that decreasing dowel spacing from 12 to 8 inches for the 1.5 inch 
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diameter FRP and 1.88 inch diameter FRP resulted in less faulting. The decreased spacing 

for the stainless steel dowels had little effect, but the average faulting of stainless steel with 

either spacing combination is less than the two FRP dowel sections with 12 inch spacing. 
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Figure 26. Average joint faulting over the pavement research lifetime. 

Along with the effect of dowel type and spacing, the faulting data was analyzed with 

regard to the grade of the pavement sections. Pavement sections epoxy coated steel dowels 

and stainless steel dowels with 12 inch spacing were construction on an uphill grade. The 

stainless steel with 8 inch spacing and 1.5 inch diameter FRP dowels with 12 and 8 inch 

spacing are located on a flat subgrade The downhill grade of the vertical curve was 

constructed with 1.88 inch diameter FRP dowels with both 8 and 12 inch spacing. 

Figure 27 illustrates the results of the analysis. The analysis shows that the uphill 

section with the least amount of faulting, with the flat and downhill grades approximately 

equal. However, the grade should not be considered the only attributing factor to the 
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faulting. The graph is influenced by the type of dowel bars and spacing used. The uphill 

section consisted of the two types of dowel bars and spacing with the lowest faulting. 
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Figure 27. Effect of pavement grade on joint faulting. 
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Lastly, the faulting was analyzed to determine the effect of the season of testing. 

Figure 28 indicates that joint faulting was greater during the spring testing periods in 

comparison to the fall testing periods. There are two possible explanations for the difference 

between testing periods. The most probable cause for the difference is due to a missing data 

in the fall of 2000. The springs of 2000 and 2001 both have large negative deflections in 

comparison to the other testing periods. Joint faulting data for the fall of 2000 may have 

increased fall average, resulting less difference between the seasons 

The second possibility could be the affect of warping and curling from temperature 

gradients created by the pavement surface expanding or contracting prior to the pavement 

bottom. A pavement will warp ( convex shape) when the pavement surface is expanding and 
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curl ( concave shape) if the surface contracts. In the spnng, temperature changes are 

generally larger than temperature changes in summer months, resulting in larger temperature 

gradients and thus more curling and warping which will effect faulting measurements. 
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Figure 28. Seasonal variation of average research lifetime joint faulting. 

Graphs indicating the maximum, minimum, and average faulting for each test section 

are provided in Appendix E. Also in Appendix E are graphs showing the relationship of 

faulting over time, for each test section. These graphs indicate a general downward trend, 

with values becoming more negative with time. 

4.3.7 Joint Opening 

Joint openings were measured to ensure the pavement slabs were able to move from 

expansion and contraction caused by thermal gradients. If pavements were not allowed to 

move, distresses within the pavement would develop, such as spalling and cracking. . The 

openings were determined by measuring the distance between surveyors nails with a digital 
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caliper. The nails were placed in the fresh concrete, on either side of the joint, 10 inches 

apart. Figure 28 is a graph of the differences between adjacent testing periods (i.e. Spring 

1998 signifies Spring 1998 joint opening minus Fall 1997 joint opening). The graph 

illustrates the all pavement test sections were able to expand or contract. This corresponds 

with the visual distress survey in which no spalling has occurred. 
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Figure 29. Difference in joint opening between current and previous testing period. 
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4.4 Statistical Inferences 

The statistical analysis performed with the experimental data was limited due to the 

complexity of the experimental design and the nature of the materials involved. The 

variables of interest in this experiment are: material, diameter, and spacing of dowel bars. 

The materials evaluated were stainless steel (Ml), fiber reinforced plastic (M2), and epoxy 

coated steel (M3). Two dowel diameters, 1.5 inch diameter (DI) and 1.88 inch diameter 

(D2), and two dowel spacings, 8 inch on center spacing (SI) and 12 inch on center spacing 

(S2), were evaluated:. There were seven different combinations (treatments) investigated, 

which are summarized in Table 9. 

T bl 9 T a e . reatment d "f escnp ions. 
Treatment Material Dowel Diameter Basket Spacing 

I M2 D2 SI 
2 M2 D2 S2 
3 M2 DI SI 
4 M2 DI S2 
5 Ml DI SI 
6 Ml DI S2 
7 M3 DI S2 

(Control) 

An analysis of variance (ANOV A) and Scheffe' multiple comparison tests were used 

to compare load transfer efficiency, concrete modulus of elasticity, modulus of subgrade 

reaction, maximum joint deflection, and joint faulting for the seven treatments. A 

comparison of means was conducted for the individual lanes in addition to a comparison of 

individual treatment testing periods. The results of these statistical analyses can be found in 

tabular form in Appendix F. 

The objective of the ANOVA test is to determine if there is a significant difference 

between the means (averages) of the variable of interest. The analysis considers the variance 
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within treatment types, as well as the variance between the treatment types. When the 

variability between the treatment types is significantly more than the variability within the 

treatment types, it can be concluded that the difference between the means is due to the 

treatment type and is not a result of testing variability. The point at which the variability 

between the treatment type_s becomes significant is based on a significance level specified by 

the researcher. The significance level specified for this experiment was a 0.05 level, 

meaning it is acceptable to the author that there is a 5% probability that two groups deemed 

significantly difference are in fact not different. This test method will not distinguish which 

test methods are different, only if there is a significant difference between the treatment types 

on the variables of interest. 

Scheffe' comparison tests are used after an ANOVA analysis has been conducted to 

determine which variables are significantly different between which pairs of treatment types. 

The Scheffe' test is one of many possible tests that could be conducted to determine 

significance between individual treatments. The difference between the comparison testing 

methods is the ease at which significance can be shown. For example, the liberal Fisher 

Least Significant Difference method, with a 0.05 significance level, would expect that 5% of 

the group comparisons would be misidentified as significantly different. On the conservative 

side, the Bonferroni method requires the desired significance level to be divided by the 

number of tests being performed. For example, for this experiment the significance level 

tested would be 0.05 divided by 21. This will result in fewer treatments deemed significantly 

different. The Scheff e' method is a compromise between the two extreme methods 

mentioned. 
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4.4.1 ANOV A Tests 

ANOV A tests were conducted to determine if the differences between the treatments 

were significant for the following variables: load transfer efficiency, concrete modulus of 

elasticity, modulus of subgrade reaction, maximum joint deflection, and joint faulting. The 

ANOV A tests indicated that the difference in treatment types were significant for all the 

variables except for joint faulting in the inside wheel path. The ANOV A tests also indicated 

that the differences between testing periods for each treatment type is significant. The 

significance between treatment types of all ANOV A tests was 0.000 for all variables, except 

the inside and outside wheel path faulting. The significance for faulting in the outside wheel 

path was 0.024, which is within the 0.05 significance level set by the author. The ANOV A 

test for faulting in the inside wheel path determined a 0.282 significance, well outside the 

0.05 level. 

4.4.2 Scheffe; Tests 

The results of the Scheffe' tests can be found in Appendix F, Tables IA through ISA. 

The following sections will discuss the results of the analysis for each variable investigated. 

4. 4. 2.1 Load Transfer Efficiency 

Tables IA and 2A present the Scheffe' results for the comparison between treatments 

over the pavement's lifetime. The results are broken down into driving and passing lanes. 

The results for the driving lane indicate: 

• Standard epoxy coated steel dowels significantly outperform all other dowel 
types and spacings,-except for the stainless steel dowels spaced on 8 inch 
centers for which no significant difference was found. 

• The stainless steel dowels spaced at 8 inches significantly outperform all other 
dowel bar materials and spacings, except for the standard epoxy coated steel. 
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• The stainless steel dowels spaced at 12 inches perform significantly less than 
the stainless steel dowels spaced at 8 inches, but significantly better than 1.5 
inch diameter FRP dowels spaced at 12 inches and 1.88 inch diameter FRP 
dowels spaced at both 8 and 12 inches. 

• The load transfer for 1.5 inch diameter FRP dowels spaced at 12 inches is 
significantly less than the same dowel bars spaced at 8 inches. Also, no 
significance was found between the 1.5 inch diameter FRP dowels spaced at 
12 inches and the 1.88 inch diameter FRP dowels with 8 or 12 inch spacing. 

• No significance was found for the difference between the 1.88 inch diameter 
FRP dowels spaced 12 inches and 8 inches. 

Passing lane results are similar to the driving lane results. The only comparisons in 

the passing lane found to be different than the driving lane are between the standard epoxy 

coated steel and stainless steel spaced at 12 inches, and the standard epoxy coated steel and 

1.5 inch diameter FRP dowels spaced at 8 inches. In both instances, the driving lane 

indicated the epoxy coated steel dowels were outperforming the other two treatments. The 

results of the passing lane indicate that no significant difference exists between the 

treatments. 

Tables 9A through 15A present the Scheffe' test results in which the difference in 

testing periods were compared. This analysis was conducted to see if a trend had developed 

over the treatment's lifetime or between spring and fall testing periods. The test results 

indicate: 

• No significant trend has developed over the research lifetime of the epoxy 
coated steel dowels. The only significant changes were noted between the fall 
of 1999 and spring of 2000, and the spring of 2001 and fall of 2001 for the 
driving lane. The passing lane experienced significant changes between the 
fall of 1998 and spring of 1999, and the fall of 1999 and spring of 1999, in 
addition to significant changes of the driving lane. A slight seasonal trend, 
but not to the 0.05 level, has developed with spring testing periods generally 

· indicating lower load transfer than in the previous fall testing period. 
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• Stainless steel dowels spaced at 12 inches developed the same seasonal trend 
as the standard dowel bars, with significant changes found between the first 
five testing periods for the driving lane. No significant changes have occurred 
for the passing lane, but the general trend still exists. The stainless steel 
dowels spaced at 12 inches exhibited greater variability between testing 
periods with greater differences between testing periods. 

• No seasonal trend developed for stainless steel dowels spaced at 8 inches. 
Variability between testing periods was much lower for stainless steel spaced 
at 8 inches when compared to 12 inches. Significant differences were found 
only between the fall of 2000 and spring of 2001 and the spring of 2001 and 
fall of 2001 for both lanes. 

• The 1.5 inch diameter FRP dowel spaced at 12 inches exhibited significant 
changes between the fall of 1998 and spring of 1999, and the fall of 2000 and 
spring of 2001 in the driving lane only. A seasonal trend with lower load 
transfer in the spring exists for the first six test periods, but an opposite trend 
exists for the last three. 

• The 1.5 inch diameter FRP dowel spaced at 8 inches indicated the same 
general seasonal trend as the 1.5 inch diameter dowel spaced at 12 inches. A 
significant change occurred only between the spring of 2001 and fall of 2000 
for the driving lane, however, the difference in means between periods for the 
8 inch spacing was generally lower than the 12 inch spacing. 

• The 1.88 inch diameter FRP dowel spaced at 12 inches exhibited a general 
downward trend in the driving lane for load transfer over the pavement 
research lifetime. The load transfer of the driving lane decreased every testing 
period except from the spring of 1998 to the fall of 1998 and from the fall of 
2000 to the spring of 2001. However, only one difference of means between 
testing periods was found to be significant. The passing lane did not show 
any downward trend, with only one difference of means found to be 
significant. 

• 1.88 inch diameter FRP dowels spaced at 8 inches exhibited the same general 
decrease in load transfer over the pavement research lifetime as the 1.88 inch 
diameter FRP dowels spaced at 12 inches. The downward trend was more 
pronounced in the driving lane with slight increases in load transfer in the fall 
testing periods offset by large decreases in the spring. However, only one 
difference of means between testing periods between both lanes was found to 
be significant 
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4.4.2.2 Maximum Joint Deflections 

The comparison of the maximwn joint deflections, located at do, is presented Tables 

3A and 4A for the driving lane and passing lane, respectively. The results of the treatment 

compansons are: 

• The maximum joint deflections for the stainless steel dowels spaced at 12 
inches were significantly larger than all other treatment types in the driving 
lane. 

• The stainless steel dowels spaced at 8 inches experienced joint deflections 
significantly smaller than all other treatment types in the driving lane. 

• In the passing lane, the 1.88 inch diameter FRP dowels spaced at 8 inches 
exhibited significantly smaller joint deflections than all other treatment types 
except for stainless steel spaced at 12 inches. 

Tables 9F through l 5F in present the Scheffe' results for the comparison of testing 

periods. The passing and driving lanes for all treatment types exhibited significant 

differences between many testing periods, but no pattern has developed. An increase in 

maximwn joint deflection for a given testing period was generally followed by a decrease in 

joint deflection. Also, the maximwn joint deflection is generally lower in the spring testing 

periods when compared to fall testing periods. This observation follows with the unexpected 

result of higher modulus of subgrade reaction values in the spring. Typically soils will have 

a lower modulus of subgrade reaction in the spring due to the thawing of soil and excess pore 

pressures. 

4.4.2.3 Modulus ofSubgrade Reaction 

The results of the modulus of subgrade reaction statistical analysis can be found in 

Tables SA and 6A, along with Tables 9A through 15A. The statistical analysis determining 

the following: 
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• Driving lane pavements with epoxy coated steel dowels have significantly 
lower subgrade reactions than all other treatments except 1.88 inch diameter 
FRP dowels spaced at 12 inches. 

• Driving lane pavements with 1.88 inch diameter FRP dowels spaced at 12 
inches are significantly lower than stainless steel dowels at 8 inch spacing, 
and 1.5 inch diameter dowels with 12 and 8 inch spacing. 

• Driving lane pavements with 1.88 inch diameter FRP dowels spaced at 8 
inches exhibit subgrade reactions significantly higher for all other treatments 
except 1.5 inch diameter FRP dowels spaced at 12 inches. 

• Passing lane pavements with 1.88 inch diameter FRP dowels spaced at 8 
inches exhibit subgrade reactions significantly higher for all other treatments. 

• Passing lane pavements with stainless steel spaced at 8 inches are significantly 
lower than all other treatments. 

• Passing lane pavements with epoxy coated steel · are significantly lower than 
stainless steel at 12 inch spacing, 1.5 inch diameter FRP at 12 inch spacing, 
and 1.88 inch diameter FRP at 8 inch spacing. 

• The comparison of testing ·periods within each treatment type did not reveal 
any trends over time for the modulus of subgrade reaction. 

The effect of the subgrade material below the pavements was also investigated. As 

stated in the research plan, due to the highway layout and cut-and-fill requirements, the 

pavement is supported on a combination of natural soils and structural fill placed during 

construction. A statistical comparison of the modulus of subgrade reaction was conducted 

without regard for the type of dowel. The modulus of subgrade reaction with natural soils is 

significantly lower than three sections supported on structural fill in the driving lane, but is 

not significantly different than the structural fill sections in passing lane. Therefore, it can be 

concluded that the difference in subgrade material impacted the test results only slightly, if at 

all. 
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4.4.2.4 Concrete Modulus of Elasticity 

The concrete modulus of elasticity was backcalculated from FWD deflection data 

from the pavement's mid-slab to reduce edge effects created by transverse joints. The results 

of the statistical analysis can be found in Tables 7 A and 8A, along with Tables 9A through 

15A. The treatment comparison for the driving lane indicated: 

• The epoxy coated steel dowel pavement is significantly larger than all other 
treatment types. 

• The pavement with stainless steel dowels with 8 inch spacing is significantly 
larger than all pavements containing FRP dowels. 

• Pavement with 1.5 inch diameter FRP dowels with 12 inch spacing exhibits 
significantly greater modulus of elasticity than all other sections with FRP 
dowels. 

Results of the passing lane comparison tests reveal only one treatment is significantly 

different than the others. Pavements with 1.88 inch diameter FRP dowels at 8 inch spacing 

have significantly larger modulus of elasticity than all other treatment types. Three other 

comparisons from different treatments display significance, but no pattern exists. 

The comparison between testing periods of the driving lane did not revealed any 

significant trends for any treatment over the concrete lifetime. Significant differences were 

obtained between various testing periods, but significant trend has developed. The passing 

lane comparisons reveal a slight decreasing trend during the first three to four testing periods. 

Although the trend exists, most of the treatment differences were not found to be statistically 

significant. After the fourth testing period, no trend developed. 

4.4.2.5 Joint Faulting 

As stated earlier, the ANOVA tests indicate that there is no significance between the 

treatment types and pavement faulting for the inside wheel path. Significance was found for 
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the outside wheel path, but the Scheffe' tests revealed no significance exists between 

individual treatment types 

Due to definition of faulting, both positive and negative faulting occurs with an 

average that tends to be near a zero reading. Therefore an analysis was conducted using the 

absolute value of the faulting. The AN OVA test results for this analysis also indicate that no 

significance between treatment types exists in the inside wheel path (0.282 level), but the 

outside wheel path did show significance at a 0.024 level. Although the ANOVA testing 

showed significance between all treatment types for the outside wheel path, the Scheff e' tests 

comparing individual treatment types indicated no significance to the 0.05 level exists. 

A third analysis of faulting was conducted in which the effect of the pavement grade 

was considered. The location of the test site is within a valley with downhill, uphill, and 

relatively flat sections. The ANOV A comparison indicated no significance between grade 

and faulting with significance of 0.626 and 0.061 for the inside and outside wheel path, 

respectively. 



www.manaraa.com

73 

5 CONCLUSIONS 

The research focused on the evaluation of alternative dowel bar materials due to 

problems associated with corrosion of today's standard steel or epoxy coated steel dowel bars 

in pavements. Both fiber reinforced plastic (FRP) and stainless steel were evaluated as 

alternative dowel bar materials within a highway pavement. Previous laboratory research 

indicated the materials were corrosion resistant with desirable mechanical properties. The 

goal of the research is to compare the performance of highway joints reinforced with FRP 

and stainless steel dowel bars to the performance of conventional epoxy-coated steel dowel 

bars, under the same design criteria and field conditions. 

Along with the type of dowel material, the influence of dowel bar spacing was 

evaluated with alternative dowel bars spaced at both 12 ( standard) and 8 inches on center. 

The hypothesis being, distributing traffic loads over more FRP dowels will result in the less 

stiff (lower modulus of elasticity) FRP dowels performing similarly to the standard steel 

dowel bars. The effect of the FRP dowel bar diameter was evaluated to validate previous 

research, which indicated increasing the FRP dowel diameter would not enhance pavement 

performance. Both 1.5 and 1.88 inch diameter FRP dowel bars were evaluated. 

The dowel bar treatments were evaluated biannually by conducting visual surveys, 

monitoring joint opening and joint faulting, and performing FWD tests. The FWD deflection 

data were graphically analyzed using load transfer efficiency, joint deflection, modulus of 

subgrade reaction, and concrete modulus of elasticity. A statistical analysis utilizing 

ANOV A and Scheffe' comparison tests, evaluated the differences between dowel type and 

spacing for each measurement type. 
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5.1 Load Transfer Efficiency 

The effect of the type of dowel bar material on load transfer efficiency is best 

illustrated when comparing dowel types with the same 12 inch spacing. For pavement 

sections with dowels spaced at 12 inches, the epoxy coated steel significantly outperforms all 

other dowel types with an average load transfer of 91 %. The stainless steel dowel bars 

outperform the FRP dowels with a load transfer of 87%. However, there is no significant 

difference between the 1.5 and 1.88 inch diameter FRP dowels at the 12 inch spacing with 

load transfers of 80% and 79%, respectively. 

The analysis of dowel spacing, 12 inches versus 8 inches, was conducted by 

comparing the same dowel material with both spacings. Stainless steel and 1.5 inch diameter 

FRP dowels spaced at 8 inches outperform stainless steel and 1.5 inch diameter FRP dowels 

with 12 inch spacing by 13.5% and 7.5%, respectively. The 1.88 inch diameter FRP dowels 

did not show any significant difference between the 12 and 8 inch spacing, with load transfer 

different by only 1 %. 

An overall comparison of load transfer efficiency for dowel bar types and spacings 

reveal that the epoxy coated steel with the standard 12 inch spacing, and stainless steel 

spaced on 8 inch centers, outperform all other alternatives with load transfer above 90%. 

The stainless steel with 12 inch spacing and 1.5 inch diameter FRP dowels spaced at 8 

inches, have a load transfer efficiency approximately 5% lower than the epoxy coated steel 

and stainless steel spaced at 8 inches. The 1.88 inch diameter FRP dowels spaced at 12 and 8 

inches perform at the lowest load transfer efficiency at approximately 80%, which is 11 % 

. lower than the epoxy coated steel and 13.5% lower than the stainless steel spaced at 8 inches. 
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5.2 Joint Deflection 

The joint deflection -is a-_fhnction of the stiffuess of the pavement system, which - -- -

includes subgrade, concrete, pavement design, and load transfer mechanisms. The type of 

dowel bar material does not appear to be the controlling factor in joint deflection magnitude. 

The average joint deflections are similar for dowel material within each lane as shown in 

Table 11. However, a difference between lanes is apparent. The difference is most likely due 

to the lack of longitudinal drains along the passing lane, resulting in weaker subgrade soils. 

A slight difference in joint deflections exists between the 12 and 8 inch spacings, but the 

differences are not large enough to conclude the difference is caused by dowel spacing. 

5.3 Modulus of Subgrade Reaction 

The modulus of subgrade reaction is dependent on the type of subgrade soil and its 

moisture condition. However, if the pavement system is not functioning properly, such as 

poor joint sealing or inadequate drainage, pumping may occur and a decrease in modulus of 

subgrade reaction would be expected. Analyses performed do not indicate any trend of 

decreasing modulus of subgrade reaction over time. Moduli of subgrade reaction of the 

treatment types were also compared over time, and there are no noticeable differences 

between treatments. A pavement system not functioning properly would have moduli values 

that do not follow the same trends as properly performing pavement. The statistical analyses 

indicate that significant differences between dowel type and spacing exist, but this is most 

likely due to variations in moisture content and soil type. 

Specific information on soil type was not available, however an analysis of modulus 

of subgrade reaction for sections with cut and fill was conducted. The results show fill 

materials have a higher modulus of subgrade reaction, on the order of 15 pci, than natural 
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soils. Fill soils are typically stronger because they have been reworked and compacted under 

ideal moisture conditions. Also, modulus of subgrade reaction for the passing lane was 

significantly lower than the driving lane. As previously discussed, this is due to the presence 

of longitudinal drains next to the driving lane. 

An analysis of the effect of subgrade stiffness on the pavement load transfer and joint 

deflection was also conducted. The less stiff subgrade in the passing lane resulted in greater 

joint deflections, along with slightly higher load transfer efficiency. The higher load transfer 

is most likely due to the loads being distributed downward to the underlying soil, instead of 

being transferred to the adjacent slab. 

5.4 Concrete Modulus of Elasticity 

Concrete modulus of elasticity is affected by dowel type and spacing, as can be seen 

in Table 13. The modulus of elasticity values presented are the result of dynamic testing, 

which will result in higher moduli values when compared with static loading. Therefore, if 

the data are compared to standard values, it should be modified according to Section 4.3.5. 

The driving lane of the pavement section containing epoxy coated steel dowels has a 

significantly higher modulus of elasticity in comparison with other dowel types and spacing 

in the driving lane. The modulus of elasticity is approximately 2 to 3 million psi stiffer than 

other sections. Sections with stainless steel dowels exhibit a concrete modulus of elasticity 

approximately 1 million psi stiffer than the four FRP dowel sections. 

The same differences are not observable in the passing lane. The most likely reason 

the differences are not duplicated in the passing lane is due to traffic loading. The driving 

lane typically will experience more traffic than the passing lane. Therefore, the decrease in 

modulus of elasticity from fatigue will not be as significant. 
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The concrete modulus of elasticity was also compared with load transfer and joint 

deflection. Results indicate that a higher concrete modulus of elasticity generally correspond 

with greater load transfer efficiency. It was also shown that concrete modulus of elasticity 

effects the joint deflection, with higher concrete moduli resulting in less joint deflection. 

5.5 Joint Faulting and Joint Opening 

Joint faulting was analyzed to determine the effects of dowel type and spacing, along 

with the pavement grade. Statistical ANOV A tests show no significance between the type of 

treatment and faulting, and pavement grade and faulting. Graphical analyses indicate that 

epoxy coated steel dowels experience the least amount of faulting, with all other treatment 

types exhibiting approximately equal faulting. A season by season comparison within each 

test section does not reveal any pattern to the magnitude or direction of faulting. A seasonal 

analysis of the average faulting over the entire project indicates more faulting in the spring 

season. This is likely due to the absence of data for the fall of 2000, with the spring periods 

prior to and after the fall of 2000 having large negative faulting. The other possible 

explanation is the seasonal variation is due to the effects of curling and warping. 

Joint openings were also monitored during the research to ensure the pavement slabs 

were allowed to expand and contract due to temperature changes. The joint openings varied 

from testing period to testing period, indicating the slabs were free to expand and contract. 

This corresponds to the minimal amount of pavement distress observed during the biannual 

visual distress surveys. 
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6 RECOMMENDATIONS 

6.1 Dowel Bar Design 

The results of this study indicate that the current dowel bar material and spacing 

standard should continue to be implemented for concrete pavements requiring dowels as load 

transfer devices. The load transfer efficiency, concrete modulus of elasticity, and joint 

faulting of the epoxy coated steel perform better than the alternative materials and spacings 

studied. However, if it is known the concrete pavement will be exposed to severe corrosive 

agents or a longer than normal design life is desired, both stainless steel spaced at 12 inches 

and 1.5 inch diameter FRP spaced at 8 inches should be considered. 

6.2 Further Study 

It is recommended that future studies evaluate new methods of attaching FRP and 

stainless steel dowels to dowel baskets. The solution should permanently attach the dowel 

bars to the baskets and minimize dowel movement within the basket during assembly, 

shipping, and pavement construction. A possible solution to investigate would be the use of 

a quick setting epoxy. 

The observational time for this research was limited to 5 years. It is recommended 

evaluation of the pavement continue during its lifetime to monitor any changes in the test 

sections. Although the epoxy coated steel may outperform the alternative dowels early in a 

pavements life, corrosion problems resulting in decreased performance, and continued 

performance of stainless steel and FRP dowels may result in a different dowel bar 

recommendation. Also, the results of the research should be verified by findings of other 

research current! y being conducted. 
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Due to the limited information on FRP dowel performance, they should be monitored 

to determine the effects the cyclic traffic loading and resulting pavement fatigue. Monitoring 

should be established to evaluate the pavement integrity, and should include structural 

analyses such as FWD tests and coring of dowels to inspect their condition 

Finally, a stress analysis of the dowels in a concrete pavement system, considering 

both the concrete slab and subgrade, should be studied. The results should provide a better 

understanding of the dowel bar performance. 
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APPENDIX A - LOAD TRANSFER 
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APPENDIX B - MAXIMUM JOINT DEFLECTION 
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APPENDIX C - MODULUS OF SUBGRADE REACTION 
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Figure 1 C. Seasonal variations of the overall average modulus of subgrade reaction. 
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APPENDIX D - CONCRETE MODULUS OF ELASTICITY 
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Figure 1D. Seasonal variations of the overall average concrete modulus of elasticity. 



www.manaraa.com

2.5E+07 

2.0E+07 

i, :g l.5E+07 
<JJ 
t'3 

@ 
<+- "cii 
0 0. 
<JJ 
::l 
:i -g l.0E+07 

5.0E+06 

94 

0.OE+O0 +-, ------.-------.---~--~--~---,-----,----~---,------. 

Fall 1997 Spring 1998 Fall 1998 Spring 1999 Fall 1999 Spring 2000 Fall 2000 Spring 2001 Fall 2001 

-+- Std. Epoxy ---S.S. @ 12" -ir- S.S. @8" - ':-- 1.5'' FRP@ 12" 

--e- 1.5" FRP @ 8" --B-1.88" FRP @ 12" -l:r- 1.88" FRP @ 8" 

Figure 2D. Seasonal variations of the average concrete modulus of elasticity in the 
driving lane. 



www.manaraa.com

2.5E+07 

2.0E+o7 

i-:g l .5E+o7 
C/l 
ell 

ii3 
t.. 'iii 
0 0. 
C/l 
::I 
:i -g l.0E+o7 

5.0E+o6 

95 

0.0E+o0 -r----.------.------.------.----.-----.......-----.------,-------r-----, 

Fall 1997 Spring 1998 Fall 1998 Spring 1999 Fall 1999 Spring2000 Fa112000 Spring2001 Fa112001 

-+- Std. Epoxy -a-s.S. @ 12" -tr- S.S. @ 8" -+-- 1.5" FRP @ 12" 

--Er-1.5" FRP @ 8" -B- 1.88" FRP @ 12" -tr- 1.88" FRP @ 8" 

Figure 3D. Seasonal variations of the average concrete modulus of elasticity in the 
passing lane. 



www.manaraa.com

96 

APPENDIX E - JOINT FAULTING 
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Figure lE. Maximum, minimum, and average joint faulting for the outside wheel path 
of epoxy steel with 12 inch spacing. 
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Figure 2E. Maximum, minimum, and average joint faulting for the inside wheel path 
of epoxy steel with 12 inch spacing. 
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Figure 3E. Maximum, minimum, and average joint faulting for the outside wheel path 
of stainless steel with 12 inch spacing. 
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Figure 4E. Maximum, minimum, and average joint faulting for the inside wheel path 
of stainless steel with 12 inch spacing. 
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Figure SE. Maximum, minimum, and average joint faulting for the outside wheel path 
of stainless steel with 8 inch spacing. 
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Figure 6E. Maximum, minimum, and average joint faulting for the inside wheel path 
of stainless steel with 8 inch spacing. 
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Figure 7E. Maximum, minimum, and average joint faulting for the outside wheel path 
of 1.5 inch diameter FRP with 12 inch spacing. 
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Figure 8K Maximum, minimum, and average joint faulting for the inside wheel path 
of 1.5 inch diameter FRP with 12 inch spacing. 
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Figure 9E. Maximum, minimum, and average joint faulting for the outside wheel path 
of 1.5 inch diameter FRP with 8 inch spacing. 



www.manaraa.com

0.150 

0.100 

0.050 

-~ 0.000 
bO 
.§ 
"5 

Cl:! 
t.t.. -0.050 

-0.100 

-0.150 

-0.200 

0.024 0.024 

A AA1 
V•VV ,L 

-0.008 

-0.039 - - -· 
- v .V.Jl 

Spring 1998 Fall 1998 

106 

0.055 
v.v .. , 

0.024 
0.012 0.008 0.005 

-0.009 f -0.012 -0.020 -0.024 -0.022 -0.016 

-0.035 
_()(147 

-0.063 

Spring 1999 Fall 1999 Spring2000 Spring2001 Fall 2001 

Data Collection Period 

Figure 1 OE. Maximum, minimum, and average joint faulting for the inside wheel path 
of 1.5 inch diameter FRP with 8 inch spacing. 
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Figure 1 lE. Maximum, minimum, and average joint faulting for the outside wheel path 
of 1.88 inch diameter FRP with 12 inch spacing. 
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Figure 12E. Maximum, minimum, and average joint faulting for the inside wheel path 
of 1.88 inch diameter FRP with 12 inch spacing. 
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Figure 13E. Maximum, minimum, and average joint faulting for the outside wheel path 
of 1.88 inch diameter FRP with 8 inch spacing. 
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Figure 14E. Maximum, minimum, and average joint faulting for the inside wheel path 
of 1.88 inch diameter FRP with 8 inch spacing. 
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Table lF. Load transfer efficiency statistical analysis of the drivin lane. 

Std. 
Epoxl 

SS@8b 

l.5''FRP 
@12b 

1.5" FRP 
@Sb 

1.88" FRP 
@12b 

1.5" FRP 1.5" FRP 1.88" FRP 1.88" FRP 
SS@ 12

3 
SS@ 83 

@ 123 @ 83 @ 123 @ 83 

5.5968* -0.8512 12.0857* 5.1676* 14.3761 * 14.3761 * 

0.032 -6.4480* 6_.4889* -0.4291 8.7793* 6.6472* 

0.006 12.9369* 6.0188* 15.2273* 13.0952* 

0.000 0.005 0.000 -6.9180* 2.2904 0.1583 

O.Qll 0.001 9.2084* 7.0764* 

0.000 0.000 0.000 0.000 -2.1321 

0.000 0.004 0.000 0.001 

Note: Upper right values are the mean differences, with the lower left values indicating 
significance level if difference found to be significant. 

Mean difference = b - a 
* = Significance found. 
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Table 2F. Load transfer efficiency statistical analysis of the lane. 

SS@ 123 SS@83 1.5" FRP 1.5" FRP 1.88" FRP 1.88" FRP 
@123 @83 @123 @83 

Std. 3.533 -2.5726 10.9507* 2.9198 10.2954* 10.2237* Epoxl 

SS@ 12b -6.10586* 7.4177* -0.61532 6.7624* 6.6907* 

SS@8b 0.000 13.58233* 5.4924* 12.868* 12.7963* 

1.5" FRP 0.000 0.000 0.000 -8.0309* -0.6553 -0.727 @12b 

1.5" FRP 0.001 0.000 -7.3756* 7.3039* @Sb 

1.88" FRP 0.000 0.000 0.000 0.000 
@12b 

1.88" FRP 0.000 0.000 0.000 0.000 @Sb 

Note: Upper right values are the mean differences, with the lower left values indicating 
significance level if difference found to be significant. 

Mean difference = b - a 
* = Significance found. 
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Table 3F. Maximum · oint deflection statistical anal sis of the drivin lane. 
1.5" FRP 1.5" FRP 1.88" FRP 1.88" FRP 

Std. Epoxy SS@ 12 SS@ 8 @ 12 @ 8 @ 12 @ 8 

Std. Epoxy -0.9493* 1.2676* 0.0090 0.3098 -0.2191 0.4354 

ss@ 12 0.001 2.2171 * 0.9583* 1.2591 * 0.7302* 1.3848* 

SS@8 0.000 0.000 -1.2588* -0.9580* -1.4869* -0.8323* 

1.5" FRP 
@12 

1.5" FRP 
@8 

1.88" FRP 
@12 

1.88" FRP 
@8 

0.001 

0.000 

0.033 

0.000 

0.000 0.3007 -0.2281 0.4264 

0.000 -0.5289 0.1257 

0.000 0.6546 

0.005 

Note: Upper right values are the mean differences, with the lower left values indicating 
significance level if difference found to be significant. 

Mean difference = b- a 
* = Significance found. 
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Table 4F. Maximum · oint deflection statistical analysis of the lane. 

Std. Epoxy 

SS@12 

SS@8 

1.5" FRP 
@12 

1.5" FRP 
@8 

1.88" FRP 
@12 

1.88" FRP 
@8 

Std. Epoxy SS @ 12 

-0.3075 

0.000 0.000 

SS@8 

0.2126 

0.5201 

0.000 

1.5" FRP 
@12 

0.1069 

0.2006 

-0.3195 

0.000 

1.5" FRP 1.88" FRP 1.88" FRP 
@8 @12 @8 

0.2123 -0.0846 1.6836* 

0.5199 0.2230 1.9911 * 

-0.0002 -0.2972 1.4710* 

0.3193 0.0224 1.7905* 

-0.2969 1.4712* 

1.7681 * 

0.000 0.000 

Note: Upper right values are the mean differences, with the lower left values indicating 
significance level if difference found to be significant. 

Mean difference = b - a 
* = Significance found. 
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Table SF. Modulus of sub rade reaction statistical analysis of the drivin lane. 
Std. SS @ 123 SS @ 83 1.5" FRP 1.5" FRP 1.88" FRP 1.88" FRP 

@ l23 @ 83 @ lZ3 @ 83 

Std. 
Epoxyb -33.8795* -36.1315* -56.6781 * -38.1119* -14.0663 -68.239* 

0.000 -2.2520 -22. 7985* -4.2324 19.8132 -34.3594* 

SS@8b 0.000 -20.5464 -1.9803 22.0652* -32.1074* 

1.5" FRP 0.000 @12b 0.039 18.5662 42.6118* -11.5609 

1.5" FRP 0.000 @8b 24.0456* -30.12714* 

1.88" FRP 
@12b 0.049 0.000 0.020 -54.1727* 

1.88" FRP 0.000 @Sb 0.000 0.000 0.001 0.000 

Note: Upper right values are the mean differences, with the lower left values indicating 
significance level if difference found to be significant. 

Mean difference = b - a 
* = Significance found. 
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Table 6F. Modulus of sub rade reaction statistical analysis of the lane. 
Std. SS@ 123 SS@ 83 1.5" FRP 1.5" FRP 1.88" FRP 1.88" FRP 

@ 123 @ 83 @ l23 @ 83 

Std. 
Epoxl 

-21.1332* 23.8647* -18.0374* -7.4789 -5.5348 -50.9200* 

0.002 44.9978* 3.0958 13.6542 15.5983 -29.7869* 

SS@8b 0.000 0.000 -41.9021 * -31.3436* -29.3995 -74.7847* 

1.5" FRP 0.021 0.000 10.5584 12.5026 -32.8826* @12b 

1.5" FRP 0.000 1.9441 -43.4411 * @8b 

1.88" FRP 0.000 -45.3852* @12b 

1.88" FRP 0.000 0.000 0.000 0.000 0.000 0.000 @Sb 

Note: Upper right values are the mean differences, with the lower left values indicating 
significance level if difference found to be significant. 

Mean difference = b - a 
* = Significance found. 
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Table 7F. Concrete modulus of elasticity statistical analysis of the drivin lane. 
Std. 1.5" FRP 1.5" FRP 1.88" FRP 1.88" FRP 

SS @ 12
3 

SS @ 8
3 

@ 12a @ 82 @ 122 @ 8a 

Std. 
Epoxyb 1.74E+06* l.27E+06* 3.72E+06* 2.67E+06* 2.35E+06* 2.62E+06* 

0.000 -4.66E+05 l.98E+06* 9.29E+05 6.l 1E+05 8.78E+05 

SS@8b 0.004 2.44E+06* l.39E+06* l.08E+06* l.34E+06* 

1.5" FRP 0.000 @12b 0.000 0.000 l.05E+06* 1.37E+06* 1.10E+o6* 

1.5" FRP 0.000 @8b 0.001 0.041 -3.18E+05 -5.05E+04 

1.88" FRP 0.000 @12b 0.032 0.001 2.67E+05 

1.88" FRP 0.000 @8b 0.002 0.026 

Note: Upper right values are the mean differences, with the lower left values indicating 
significance level if difference found to be significant. 

Mean difference = b - a 
* = Significance found. 
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Table SF. Concrete modulus of elasticity statistical analysis of the lane. 
Std. SS @ 123 SS @ 8a 1.5" FRP 1.5" FRP 1.88" FRP 1.88" FRP 

@ 12a @ 83 @ 123 @ 83 

Std. 
Epoxyb 1.44E+05 6.36E+05 1.56E+06* 7.41E+05 3.70E+05 -1.06E+06* 

4.92E+05 1.42E+06* 5.97E+05 2.26E+05 -l.21E+06* 

SS@8b 9.27E+o5 l.05E+05 -2.65E+05 -l.70E+06* 

1.5" FRP 0.000 @12b 0.000 -8.21E+05 -1.19E+06* -2.62E+06* 

1.5" FRP 
@Sb 

-3.70E+05 -l.80E+06* 

1.88" FRP 
@12b 0.005 -l.43E+06* 

1.88" FRP 0.022 @Sb 0.004 0.000 0.000 0.000 0.000 

Note: Upper right values are the mean differences, with the lower left values indicating 
significance level if difference found to be significant. 

Mean difference = b - a 
* = Significance found. 
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T bl 9F St d d a e . an ar epoxy coa e s ee s a 1s 1ca ana ys1s e tdt Itff I I . b tw een es mg per10 s. t f "d 

S98-F971F98-S9sls99-F9slF99-S99lsoo-F991Foo-soolso1-FoolF01-s01 
Load -4.3822 -2.1101 -0.07951 3.9696 -7.8318* 2.1509 3.9403 11.6670* Transfer 

Significance 0.449 0.984 1.000 0.592 0.004 0.982 0.602 0.000 

Area -1.1316 0.7585 -0.7697 4.2117* -3.9906* 0.3489 1.2073 1.7091 

Significance 0.860 0.986 0.985 0.000 0.000 1.000 0.810 0.364 

= Concrete c,: 
..J Modulus of 8.63E+05 9.25E+05 -2.66E+06 3.46E+06* -2.19E+06 -7.70E+05 -4.92E+05 5.09E+o6* 
bl) 

Elasticity .5 ;;,. 
"i: Significance 0.997 0.995 0.246 0.034 0.526 0.999 1.000 0.000 Q 

Modulus of 
Subgrade 49.5449* -12.9174 -18.8263 -69.2266* 87.2865* -23.0245 -39.1200* 6.7634 
Reaction 

Significance 0.002 0.981 0.842 0.000 0.000 0.630 0.035 1.000 

Max Joint -0.7344 0.6456 0.7644 3.6267* -3.4933* 0.2889 0.1500 0.6822 Deflection 

Significance 0.492 0.670 0.433 0.000 0.000 0.997 1.000 0.598 

S98 - F97 I F98 - S981 S99 - F98 I F99 - S991 S00 - F99 I FOO - S00 I SOI - FOO I FOl - S01 
Load -1.0127 -0.6605 -6.1097* 4.3000* -5.1398* 0.9761 0.2839 13.7721 * Transfer 

Significance 0.997 1.000 0.000 0.015 0.001 0.997 1.000 0.000 

Area -0.9665 1.6809 -1.852 1.211 -1.1742 0.2945 -0.3027 1.9751 

Significance 0.964 0.515 0.372 0.873 0.891 1.000 1.000 0.282 

= Concrete c,: 
..J Modulus of -8.21E+05 -7.75E+05 -3.86E+05 49357 3.14E+o6* -1.19E+06 -1.11E+06 3.46E+06* 
bl) 

Elasticity .5 
Cl) 
Cl) 
c,: 

Significance 0.968 0.977 1.000 1.000 0.000 0.833 0.833 0.000 

Modulus of 
Subgrade 9.1825 -42.5767* 26.3291 -19.7682 71.9953* -28.3697* -9.7559 1.5279 
Reaction 

Significance 0.981 0.000 0.059 0.358 0.000 0.029 0.973 1.000 

Max Joint 0.6622 2.9211 * -1.2300 1.4533* -3.8467* 2.1600* -0.8300 0.6233 Deflection 

Significance 0.838 0.000 0.093 0.019 0.000 0.000 0.591 0.880 
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Table 1 OF. Stainless steel, 12 inch on center spacing, statistical analysis between testing 
.d per10 s. 

S98 - F97 I F98 - S981 S99 - F98 I F99 - S991 SOO - F99 I FOO - SOO I SOI - FOO I FOI - SOI 
Load -14.5577* 10.8402* -18.9340* 22.2787* -18.6072 5.6369 3.7867 13.0228* Transfer 

Significance 0 0.006 0.000 0 0 0.591 0.934 0.000 

Area -3.8326 1.3821 -0.3536 3.7415* -4.8865* 0.6653 -0.09924 2.2459 

Significance 0.001 0.868 1.000 0.010 0.000 0.999 1.000 0.278 

= Concrete 
Modulus of -l.15E+06 1.80E+06 -3.l 1E+06* 3.13E+06* 2.69E+06* 2.58E+o4 -1.09E+06 3.46E+o6* 
Elasticity .5 

> 
"i: 

Significance 0.876 0.351 0.012 0.011 0.018 1.000 0.908 0.000 Q 

Modulus of 
Subgrade 107.6379* -14.0104 -51.6385 -54.5415 108.7753* -24.7403 -21.3969 -7.5696 
Reaction 

Significance 0.000 0.999 0.341 0.163 0.000 0.952 0.980 1.000 

Max Joint -2.6589* 0.5100 0.5356 2.8667* -2.8800* 0.5189 0.1822 0.3100 Deflection 

Significance 0.000 0.810 0.961 0.000 0.000 0.795 1.000 0.989 

S98 - F97 I F98 - S981 S99 - F98 I F99 - S991 SOO - F99 I FOO - SOO I SOI - FOO I FOI - SOI 
Load -0.6707 3.0322 -5.5705 3.5047 -3.8124 1.3921 6.4204 3.8234 Transfer 

Significance 1 0.909 0.213 0.813 0.73 0.999 0.081 0.727 

Area -0.2473 0.9046 -0.4837 2.5293* -3.8689* 1.0755 0.7646 1.1781 

Significance 1.000 0.959 0.999 0.021 0.000 0.891 0.985 0.829 

= Concrete 
Modulus of -1.62E+06* -1.03E+06 7.30E+04 1.93E+06* -4.73E+05 -3.75E+04 -7.52E+05 3.48E+06* 
Elasticity .5 

r,;, 
r,;, 

Significance 0.014 0.414 1.000 0.001 0.986 1.000 0.809 0.000 

Modulus of 
Subgrade -25.5236 -41.9025 12.9894 -19.8337 88.3077* -34.4746 -32.0589 25.7291 
Reaction 

Significance 0.673 0.067 0.992 0.896 0.000 0.250 0.349 0.663 

Max Joint 0.6444 1.9000* -1.2567* 1.9011 * -4.4178* 2.4911 * -0.8133 0.7500 Deflection 

Significance 0.465 0.000 0.001 0.000 0.000 0.000 0.156 0.249 
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Table llF. Stainless steel, 8 inch on center spacing, statistical analysis between testing 
.d per10 s. 

S98 - F97 I F98 - S98 I S99 - F98 I F99 - S99 I S00 - F99 I FOO - soo I SOI - FOO I FOI - SOI 
Load -2.1178 -0.4557 1.6882 1.8198 -4.1427 -7.1808* 10.8698* 4.4221 Transfer 

Significance 0.863 1 0.960 0.939 0.08 0 0 0.045 

Area -3.4807* 2.2604* -1.9387 4.4130* -4.4501 * -0.9205 1.6341 0.1784 

Significance 0.000 0.028 0.110 0.000 0.000 0.925 0.302 1.000 

Concrete = 
Modulus of 9.57E+05 l.79E+05 -2.03E+06 4.55E+o6* -3.49E+06* -9.30E+05 -1.87E+04 2.86E+o6* 
Elasticity .5 ;;;,. 

"i: Significance 0.972 1.000 0.292 0.000 0.001 0.977 1.000 0.000 Q 

Modulus of 
Subgrade -128.8969* -82.0451 27.0784 -67.4510* 92.4065* 14.9427 -60.7992* 50.3719* 
Reaction 

Significance 0.000 0.000 0.470 0.000 0.000 0.966 0.000 0.003 

Max Joint -1.0289 0.7244* 0.4389 1.7900* -1.7133* 1.1656* -1.0678 -0.2222 Deflection 

Significance 0.000 0.005 0.365 0.000 0.000 0.000 0.000 0.969 

S98-F97 IF98-S9sls99-F981F99-S991 soo-F99 IFoo-soolsoI-FoolFoI-SOI 
Load 0.4964 1.9384 -0.8526 -1.4387 -0.1564 -8.3617* · 9.8405* -1.3813 Transfer 

Significance 1 0.985 1.000 0.998 1 0 0.000 0.999 

Area 0.7602 0.4455 0.3838 1.9378 -2.0206 0.02527 0.8192 1.3529 

Significance 0.996 1.000 1.000 0.437 0.376 1.000 0.993 0.858 

= Concrete 
Modulus of -2.31E+06* -l.48E+06 4.83E+05 1199830 1.83E+06* 1.99E+05 -7.40E+05 3.23E+06* 
Elasticity .5 

Cl.) 
Cl.) 

Significance 0.000 0.069 0.989 0.276 0.007 1.000 0.866 0.000 

Modulus of 
Subgrade -53.0135* -30.0010* 4.5503 -10.312 51.3313* 0.271 -23.1979 6.9774 
Reaction 

Significance 0.000 0.006 1.000 0.943 0.000 1.000 0.098 0.995 

Max Joint 1.5689* 2.7333* -0.0511 1.2867 -3.9844* 1.6200* -0.7900 0.2922 Deflection 

Significance 0.010 0.000 1.000 0.080 0.000 0.007 0.690 0.999 
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Table 12F. 1.5 inch diameter FRP, 12 inch on center spacing, statistical analysis 
b .d etween testmg per10 s. 

S98-F97 IF98-S9sls99-F9slF99-S99lsoo-F991Foo-soolso1-FoolF01-so1 
Load -4.7482 6.9579 -22.3703* 8.0477 -10.164 -4.0785 17.6252* 2.7493 Transfer 

Significance 0.963 0.737 0.000 0.551 0.221 0.986 0.000 0.999 

Area -1.6801 0.1304 -0.5887 1.5303 -0.533 -1.5462 1.5701 0.2385 

Significance 0.201 1.000 0.994 0.322 0.997 0.307 0.286 1.000 
Q, 

= Concrete =· Modulus of 1.13E+06 -5.90E+05 -l.13E+06 l.43E+06 2.59E+05 -l.32E+06 -l.31E+06 2.59E+o6* 
bll Elasticity .5 
i> ·c 

Significance 0.529 0.981 0.524 0.200 1.000 0.304 0.311 0.000 Q 

Modulus of 
Subgrade 82.4402 -23.6672 -9.3342 -14.4388 24.7581 22.2699 -56.1571 * 55.8813* 
Reaction 

Significance 0.000 0.569 0.998 0.959 0.504 0.651 0.000 0.000 

Max Joint -1.3211 0.8600 1.1344 1.9311 * -2.1944* 0.9811 -.7100 0.2489 Deflection 

Significance 0.149 0.720 0.336 0.003 0.000 0.549 0.884 1.000 

S98 - F97 I F98 - S98 I S99 - F98 I F99 - S99 I soo - F99 I FOO - soo I SOI - FOO I FOi - SOI 
Load -5.5772 1.9947 -7.9618 -2.0084 4.1098 -8.8863 12.0104 -1.0691 Transfer 

Significance 0.947 1.000 0.693 1.000 0.992 0.547 0.144 1.000 

Area -0.1312 1.3339 -1.2563 0.5646 -0.4946 -0.9044 1.8968* 0.7548 

Significance 1.000 0.160 0.228 0.977 0.988 0.686 0.005 0.858 
Q, 

= Concrete = 
Modulus of -1.50E+06* -6.69E+05 -4.69E+05 l.29E+06* l.21E+o6* -3.44E+05 -2.36E+04 2.05E+06* 

bll 
Elasticity .5 

Cll 
Cll = Significance 0.001 0.634 0.930 0.008 0.017 0.990 1.000 0.000 

Modulus of 
Subgrade -31.3784* -40.2487* 12.9635 17.2723 38.6708* 16.5112 -49.0499* 18.5873 
Reaction 

Significance 0.000 0.000 0.454 0.102 0.000 0.140 0.000 0.055 

Max Joint 1.4700 2.9922* -0.7411 -0.3478 -2.5122* 1.7333 -0.3178 0.2956 Deflection 

Significance 0.415 0.000 0.975 1.000 0.005 0.192 1.000 1.000 
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Table 13F. 1.5 inch diameter FRP, 8 inch on center spacing, statistical analysis between 
t t· . d es mg per10 s. 

S98 - F97 F98- S98 S99-F98 F99-S99 SOO - F99 FOO - SOO SOI - FOO FOI - SOI 
Load -2.7185 0.2261 -6.6317 3.8424 -4.9823 -2.8314 12.2225* 7.5699 Transfer 

Significance 0.992 1.000 0.377 0.934 0.760 0.990 0.001 0.201 

Area -2.1461 -1.2914 0.9395 2.0712 -1.1962 -2.36 2.4127 0.1585 

Significance -0.641 0.972 0.997 0.686 0.983 0.508 0.476 1.000 

= Concrete 
Modulus of -l.78E+05 -2.27E+06 -1.47E+05 l.72E+06 4.93E+05 -2.28E+06 2.82E+05 2.96E+06 

OJ) 
Elasticity .5 ;.,,. ·c 
Significance 1.000 0.482 1.000 0.817 1.000 0.474 1.000 0.134 

Modulus of 
Subgrade 70.2247* -17.414 -24.3897 -28.6256 46.2723 81.6416* -75.9423* 54.0043* 
Reaction 

Significance 0.001 0.980 0.862 0.715 0.101 0.000 0.000 0.024 

Max Joint -1.1567 1.1011 0.7411 1.6411 * -2.1722* 0.7344 0.2422 -0.6244 Deflection 

Significance 0.377 0.450 0.887 0.037 0.001 0.892 1.000 0.956 

S98-F97 F98- S98 S99-F98 F99-S99 SOO - F99 FOO - SOO SOI - FOO FOI - SOI 
Load -4.101 6.7530 -2.6939 1.2433 -3.3063 -6.2238 6.9858 -0.7281 Transfer 

Significance 0.971 0.645 0.998 1.000 0.993 0.742 0.600 1.000 

Area -0.336 -1.0115 1.7187 0.669 -0.7429 -0.8424 1.8662 0.5749 

Significance 1.000 0.986 0.747 0.999 0.998 0.996 0.649 1.000 

= Concrete 
Modulus of -1.90E +06* -1.57E +06* 1.07E+06 -6.44E+05 2.71E+06* 2.68E+05 -7.88E+05 2.95E+06 

OJ) 
Elasticity .5 

r,i 
r,i 

Significance 0.003 0.034 0.408 0.930 0.000 1.000 0.804 0.000 

Modulus of 
Subgrade -27.9591 * -23.9067 1.1564 -21.5224 58.3381 * 28.2882* -60.0081 * 27.1163 
Reaction 

Significance 0.045 0.157 1.000 0.282 0.000 0.040 0.000 0.060 

Max Joint 0.9978 2.3389* -0.6689 2.1122* -3.6711 * 1.0989 0.6389 -0.7944 Deflection 

Significance 0.596 0.000 0.936 0.001 0.000 0.457 0.951 0.843 
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Table 14F. 1.88 inch diameter FRP, 12 inch on center spacing, statistical analysis 
btw tt" "d e een es mg per10 s. 

S98- F97 F98- S98 S99 - F98 F99 - S99 SOO - F99 FOO - SOO SO1 - FOO FOl - SO1 
Load -6.9265 14.1545 -8.3921 -1.7009 -11.1642 -12.5399 24.0447* -8.2198 Transfer 

Significance 0.946 0.197 0.849 1.000 0.527 0.356 0.000 0.864 

Area -1.424 1.1673 -1.2525 3.1514- -2.4957* -1.9293 1.842 -2973 

Significance -0.599 0.821 0.755 0.001 0.020 0.179 0.233 1.000 

C Concrete 
,..;j Modulus of 5.69E+05 2.08E+05 -2.53E+06 2.95E+06* -5.70E+05 -2.05E+06 4.33E+05 1.70E+06 
bl) 

Elasticity .5 
;;i,. .i: 

Significance 0.999 1.000 0.090 0.020 0.999 0.319 1.000 0.589 Q 

Modulus of 
Subgrade 54.2706* -35.0640* -7.792 -38.0396* 60.7126* 23.3228 -49.5162* 43.8649* 
Reaction 

Significance 0.000 0.008 0.997 0.003 0.000 0.280 0.000 0.000 

Max Joint -0.1978 0.1978 1.0567 1.8822* -2.2178* 1.5100* -0.8467 0.1011 
Deflection 

Significance 1.000 1.000 0.201 0.000 0.000 0.007 0.510 1.000 

S98-F97 F98-S98 S99-F98 F99-S99 SOO-F99 FOO- SOO SO1 - FOO FOl - SOI 
Load -12.6665 17.8931* -8.8405 2.5771 -1.9487 -6.5181 12.8973 -5.6869 
Transfer 

Significance 0.209 0.009 0.704 1.000 1.000 0.932 0.188 0.969 

Area -0.7491 1.1118 -0.9626 1.7212* -0.8921 -1.1524 2.1189* 0.6202 

Significance 0.675 0.146 0.320 0.001 0.430 0.113 0.000 0.858 

C Concrete 
,..;j Modulus of -1.93E+06* -1.06E+06 -7.54E+05 2.15E+06* 1.26E+06 -7.83E+05 7.98E+04 1.99E+06* 
bl) 

Elasticity .5 
fl) 
fl) 

Significance 0.000 0.291 0.749 0.000 0.101 0.707 1.000 0.000 

Modulus of 
Subgrade -15.9651 -40.2103* 3.212 3.5309 38.0757* 16.0746 -47.5021 * 11.649 
Reaction 

Significance 0.184 0.000 1.000 1.000 0.000 0.177 0.000 0.621 

Max Joint 1.3600 1.4922 0.4322 -0.1989 -2.4333* 2.1144* -0.4467 0.3489 
Deflection 

Significance 0.128 0.062 0.995 1.000 0.000 0.001 0.993 0.999 
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Table lSF. 1.88 inch diameter FRP, 8 inch on center spacing, statistical analysis 
btw tf 0 d e een es m2 per10 s. 

S98 - F97 F98 - S98 S99-F98 F99 - S99 S00 - F99 FOO - S00 S01 - FOO FOl - S01 
Load -0.1223 5.6618 -12.9373 0.3859 -12.9489 0.3347 18.7007* -2.3519 Transfer 

Significance 1.000 0.979 0.256 1.000 0.255 1.000 0.011 1.000 

Area -0.9038 -0.0689 -1.0772 0.8594 -0.336 -1.7732 1.8267 0.02741 

Significance 0.952 1.000 0.874 0.964 1.000 0.272 0.233 1.000 

= Concrete 
.J Modulus of l.01E+05 9.91E+02 -2.84E+06* 9.94E+05 5.44E+05 -l.41E+06 2.42E+o5 2.25E+o6* 

Elasticity .5 ;;... 
"i: Significance 1.000 1.000 0.003 0.911 0.998 0.581 1.000 0.045 Q 

Modulus of 
Subgrade 37.1394 1.3604 -28.0446 -8.0453 24.5264 36.1939 -63.3146* 55.0402* 
Reaction 

Significance 0.277 1.000 0.673 1.000 0.814 0.312 0.001 0.010 

Max Joint -0.4226 0.6411 1.1033 1.2322 -1.4144 0.9178 -0.2589 0.1400 Deflection 

Significance 0.994 0.930 0.364 0.216 0.085 0.630 1.000 1.000 

S98 - F97 F98 - S98 S99-F98 F99 - S99 S00 - F99 FOO - S00 S01 - FOO FOl - S01 
Load -0.2989 8.1106 -10.8999 1.9107 -4.783 -5.4136 5.9764 -3.9837 Transfer 

Significance 1.000 0.749 0.348 1.000 0.986 0.970 0.946 0.996 

Area -0.6339 0.831 -0.2548 2.0711 0.8007 -3.1701* 2.329 0.0128 

Significance 0.999 0.995 1.000 0.450 0.996 0.028 0.281 1.000 

= Concrete 
.J Modulus of -2.18E+06 l.26E+05 -7.17E+05 l.58E+06 2.14E+o6 -2.50E+06 5.49E+o5 3.13E+06 

Elasticity .5 
I'll 
I'll 

Significance 0.460 1.000 0.999 0.841 0.488 0.264 1.000 0.057 

Modulus of 
Subgrade -29.8258 -21.2382 -8.8178 -23.13 8.0084 48.6853* -54.9279* 49.6263* 
Reaction 

Significance 0.219 0.690 0.998 0.578 0.999 0.001 0.000 0.001 

Max Joint 0.8456 0.8878 0.322 0.3611 -1.2644 1.3689 -0.0278 -0.6344 Deflection 

Significance 0.815 0.770 1.000 0.999 0.295 0.195 1.000 0.960 
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